On the Design of Multi-Rate Tracking Controllers: Application to Rotorcraft Guidance and Control

Duarte Antunes¹, Carlos Silvestre¹, and Rita Cunha¹

¹ Instituto Superior Técnico, Institute for Systems and Robotics, 1049-001 Lisbon, Portugal Av. Rovisco Pais

SUMMARY

This paper presents a new methodology for the design and implementation of gain-scheduled controllers for multi-rate systems. The proposed methodology provides a natural way to address the integrated guidance and control problem for autonomous vehicles when the outputs are sampled at different instants of time. A controller structure is first proposed for the regulation of non-square multi-rate systems with more measured outputs than inputs. Based on this structure, an implementation for a gain-scheduled controller is obtained that verifies an important property known as the linearization property. The method is then applied to the problem of steering an autonomous rotorcraft along a predefined trajectory defined in terms of space and time coordinates. By considering a convenient error vector to describe the vehicle’s dynamics, the trajectory tracking problem is reduced to that of regulating the error variables to zero. Due to the periodic multi-rate nature of the onboard sensor suite, the controller synthesis is dealt with under the scope of linear periodic systems theory. Simulation results obtained with a full non-linear rotorcraft dynamic model are presented and discussed. Copyright © 0000 John Wiley & Sons, Ltd.

KEY WORDS: multi-rate control; gain-scheduling control; output regulation; guidance and control

1. INTRODUCTION

Over the last few decades there has been a surge of interest in the development of efficient and reliable guidance and control algorithms for unmanned vehicles. An endless number of applications are reported in the literature, ranging from underwater geological surveillance[14] to spacecraft missions[19]. Increasing advances in sensor technology call for the development and design of control systems capable of taking full advantage of the sensors characteristics. Moreover, the designer is often faced with challenging control problems due to the choice of cost-effective sensor solutions.

Traditionally, the guidance and control problem for autonomous vehicles involves the design of an inner and an outer loop [18]. The inner loop is designed to stabilize the vehicle dynamics and usually requires a high sampling rate, whereas the outer loop design relies essentially on the vehicle’s kinematic model, converting tracking errors into inner loop commands, and is amenable to a lower sampling rate. As explained in Ref. [17], since the two systems, kinematics and dynamics, are effectively coupled, stability and adequate performance of the combined systems are not guaranteed. An interesting feature of this technique is that, since the kinematic variables are commonly available at lower rates (consider for example the case of a GPS receiver), the design of the different loops at different rates often handles naturally the multi-rate characteristic of the sensors.

Another line of work, presented in Refs. [17],[9],[6], proposes and integrated solution for the guidance and control problem. This solution amounts to applying a conveniently defined path-dependent transformation to the vehicle’s equations of motion, which involves both kinematic
and dynamic variables of the vehicle. In this new space, referred to as error-space, the problems of trajectory tracking or path-following reduce to the problem of driving this newly-defined error to zero. The family of error transformations presented in Refs. [17]-[6] have the notable property of guaranteeing that the linearization of the error dynamics is time-invariant along trimming trajectories, which comprise arbitrary straight lines and \( z \)-aligned helices. Since the vehicle’s dynamic behavior changes considerably throughout its flight envelope, gain-scheduling control laws, which have become a standard solution in flight control systems, are typically used. In this setting, the multi-rate characteristics of the sensors have been traditionally handled by the navigation system design [14] without guaranteeing the performance (or even the stability) of the overall closed loop system, although the problem can be formulated as a control design problem.

This paper follows the line of work reported in Refs. [17]-[6], adopting the integrated guidance and control approach and proposes a novel method to take into account the multi-rate characteristics of the sensors in the controller design. To this effect, theoretical results are first derived which make use of the existing background for multi-rate systems and gain-scheduling theory. The theory for multi-rate systems is intimately related with the theory of periodically time-varying systems. See, for example, Ref. [15] and the references therein for early work on the subject and Ref. [13] for more recent developments. Noteworthy is the bulk of work in this field by Bittanti, Colaneri and co-workers. With particular interest to the present paper are the definitions of stabilizability and detectability for periodic systems [1], and the solutions of the problems of regulation for square multi-rate systems [5], output stabilization for periodic systems [3], and LQG optimal control for multi-rate systems [4]. In the field of gain-scheduling an excellent survey can be found in Ref. [16]. The commonly adopted method for the development of gain-scheduled controllers, which is also followed in the current paper, involves the following steps:

1. Obtain a family of parameter dependent linear models, usually by Jacobian linearization of the plant about a finite number of representative operating points characterized by parameter values. The parameters correspond to fixed values of scheduling variables, which are functions of internal state variables and exogenous signals.

2. Design a family of linear controllers for the family of parameter dependent linear models. If a finite set of linearized plant models is available from the first step, then linear controllers are designed for each linear model, corresponding to a fixed parameter value, and their coefficients are interpolated. Typically the interpolation is such that the controllers coefficients depend continuously on the parameters.

3. Implement the gain-scheduled controller on the nonlinear plant. The controller coefficients (gains) computed for time-frozen parameters are changed on-line according to the current value of the scheduling variables.

4. Perform extensive simulations for the resulting control system to access its performance characteristics.

Since the controllers are designed for time-frozen parameters and when implemented the parameters are allowed to vary, the linearization of the nonlinear gain-scheduled controller about a given equilibrium point does not in general match the designed time-frozen linear controller. This mismatch is commonly known as the hidden coupling [16] and might lead to performance degradation or even instability. Therefore, for a correct implementation of the controllers, the following property is required to hold:

**Linearization property:** At each equilibrium point, the nonlinear gain-scheduled controller must linearize to the linear controller designed for that equilibrium.

A technique known as the velocity implementation, presented in Refs. [11], [10] and discussed in Refs. [16], [12], which is related with the work presented herein, provides a simple solution for the implementation of controllers with integral action that verifies the linearization property.
Based on the foundations of gain-scheduling and multi-rate control theory and motivated by the problem at hand, the contributions of this paper are two fold: i) a new structure is proposed for the regulation of non-square multi-rate systems with more outputs than inputs and, based on this structure, ii) a straightforward method is obtained for the implementation of gain-scheduled controllers for multi-rate systems that verify the linearization property. Using these results, and casting the integrated guidance and control problem as a regulation problem, we are able to solve in a systematic manner the guidance and control problem for autonomous vehicles equipped with multi-rate sensor suite. An application of this methodology is presented which tackles the trajectory tracking problem of steering an autonomous rotorcraft along a pre-defined trajectory. The synthesis of linear controllers, one of the stages in the design of the gain-scheduled controller, makes use of the $H_2$ control synthesis framework for periodic systems. The performance of the resulting non-linear multi-rate guidance and control law is compared to that obtained with a standard single-rate compensator designed using equivalent weighting matrices in the $H_2$ controller design problem.

The remainder of the paper is organized as follows. First we develop a theoretical framework for the design of multi-rate gain scheduled controls valid for a wide class of non-linear systems. Section 2 describes the problem formulation and Sections 3 and 4 present the main results: the regulator structure and gain-scheduling implementation, respectively. In Section 5 we apply the proposed methodology to the design of an integrated guidance and control system that addresses the trajectory tracking problem for a small-scale rotorcraft, and evaluate the performance of the resulting nonlinear feedback system in simulation. Section 6 presents some concluding remarks.

1.1. Notation

The space of $n$-dimensional continuous-time signals, $x(t): \mathbb{R}^+ \rightarrow \mathbb{R}^n$, will be denoted by $\mathcal{L}(\mathbb{R}^+; \mathbb{R}^n)$ or simply by $\mathcal{L}(\mathbb{R}^+)$ and the space of $n$-dimensional discrete-time signals, $x_k : \mathbb{Z}^+ \rightarrow \mathbb{R}^n$, will be denoted by $l(\mathbb{Z}^+, \mathbb{R}^n)$ or simply by $l(\mathbb{Z}^+)$. The notation $\text{diag}([a_1 \ a_2 \ldots \ a_n])$ indicates a block diagonal matrix where the entries $a_i$ can be either scalar or matrices. Whenever the matrices dimensions are clear, identity and zero matrices are denoted by $I$ and $0$. Otherwise the dimensions are explicit indicated as in $I_{3 \times 3}$, $0_{3 \times 2}$. A vector of $n$ ones is denoted by $1_n = [1 \ 1 \ldots \ 1]^T$. Further notation will be introduced when necessary.

2. PROBLEM FORMULATION

Consider the nonlinear system

$$G = \begin{cases} \dot{x}(t) = f(x(t), u(t), w(t)) \\ y(t) = h(x(t), w(t)) \\ z(t) = g(x(t), u(t), w(t)) \end{cases}$$  

(1)

where $x(t) \in \mathbb{R}^n$ is the state and $u(t) \in \mathbb{R}^m$ is the control input. The vector $w(t) = [r(t)^T \ d(t)^T]^T \in \mathbb{R}^{n_w}$ is a vector of exogenous signals where $r(t)$ represents references to be tracked and $d(t)$ represents both external disturbances and measurement noise. The vector $y(t) = [y_m(t)^T \ y_r(t)^T]^T = [h_m(x(t), w(t))^T \ h_r(x(t), w(t))^T]^T \in \mathbb{R}^p$ contains a vector of measured outputs $y_m(t) \in \mathbb{R}^{n_{ym}}$ and a vector of reference tracking outputs $y_r(t) \in \mathbb{R}^{n_{yr}}$, which we assume to have the same dimensions as the control input, $n_{yr} = m$. This vector is required to track the reference $r(t)$ with zero steady-state error, i.e, the vector $e(t)$ defined as

$$e(t) = y_r(t) - r(t)$$

must satisfy $e(t) = 0$ at steady-state. Some of the components of $y_r(t)$ may be included in $y_m(t)$ as well. Finally, the vector $z(t) \in \mathbb{R}^{n_z}$ is a performance output. We assume that $f$ and $g$ are continuously differentiable functions.
2.1. Linearization family

We assume that there exists a family of equilibrium points for $G$ of the form

$$\Sigma = \{(x_0, u_0, w_0) : f(x_0, u_0, w_0) = 0, \ y_r = h_r(x_0, w_0) = r_0, \ (x_0, u_0, w_0) \in \Omega \subset \mathbb{R}^{n+m+n_w}\}$$

(2)

which can be parameterized by a vector $\alpha_0 \in \Xi \subset \mathbb{R}^s$, such that

$$\Sigma = \{(x_0, u_0, w_0) = a(\alpha_0), \alpha_0 \in \Xi\}$$

where $a$ is a continuously differentiable function. In the vector $w(\alpha_0) = [r(\alpha_0) \ d(\alpha_0)]$ we set $d(\alpha_0) = 0$ since the exogenous input $d$ is not known in advance. We further assume that there exists a continuously differentiable function $v$ such that $\alpha_0 = v(y_0, w_0)$. By applying the function $v$ to the measured values of $y$ and $w$, we obtain the variable

$$\alpha = v(y, w)$$

(3)

which is usually referred to as the scheduling variable.

Linearizing the nonlinear system $G$ about each point in the equilibrium manifold $\Sigma$, parameterized by $\alpha_0$, yields the family of linear systems

$$G_1(\alpha_0) = \begin{bmatrix} \dot{x}_1(t) \\ \dot{z}_1(t) \\ \dot{y}_1(t) \end{bmatrix} = \begin{bmatrix} A(\alpha_0) & B_1(\alpha_0) & B_2(\alpha_0) \\ C_1(\alpha_0) & D_{11}(\alpha_0) & D_{12}(\alpha_0) \\ C_2(\alpha_0) & D_{21}(\alpha_0) & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ u_1(t) \\ w_1(t) \end{bmatrix}$$

(4)

where, for example, $A(\alpha_0) = \frac{\partial f}{\partial x}(a(\alpha_0))$ and $x_1(t) = x(t) - x_0$.

2.2. Multi-rate sensors and actuators

We consider that the sample and hold devices that interface the discrete-time controller and the continuous-time plant operate at different rates. The setup is shown in Figure 1, where the generic discrete-time controller is denoted by $K$.

![Figure 1. Multi-rate setup](image)

Associated with each sampler $S_i$ there is a sequence of sampling times $\{\sigma^i_1, \sigma^i_2, \ldots\}$ that verifies $0 < \sigma^i_j < \sigma^i_{j+1}$. Similarly, associated with each holder $H_i$ there is a sequence of sampling times $\{\tau^i_1, \tau^i_2, \ldots\}$ that verifies $0 < \tau^i_j < \tau^i_{j+1}$. We assume that the sample and hold operations are periodic and that their periods are related by rational numbers. Thus we can define a sequence of equally spaced time instants $\{t_0, t_1, \ldots\}$, $t_{k+1} - t_k = t_s, k \in \mathbb{Z}^+$, such that for every sampling time $\sigma^i_j$ and hold time $\tau^i_j$ there exists a $k_1$ and a $k_2$ for which $\sigma^i_j = t_{k_1}$ and $\tau^i_j = t_{k_2}$.

Each mapping $S_i : y_i(t) \in L(\mathbb{R}^+) \rightarrow y_{ik} \in l(\mathbb{Z}^+)$ is given by

$$(S_i y_i)_k = g_i(k) y_i(t_k) = y_{ik}, \quad g_i(k) = \begin{cases} 1 & \text{if } \sigma^i_j = t_k \text{ for some } i \\ 0 & \text{otherwise} \end{cases}$$
meaning that the output of the sampler $S_i$ is zero if channel $i$ is not sampled at time $t_k$, and each mapping $H_i : u_{ik} \in l(\mathbb{Z}^+) \rightarrow u_i(t) \in \mathcal{L}(\mathbb{R}^+)$ is given by

$$
\xi_{ik+1} = (1 - r_i(k))\xi_{ik} + r_i(k)u_{ik}, \quad \xi_{i0} = 0
$$

$$
\tilde{u}_{ik} = (1 - r_i(k))\xi_{ik} + r_i(k)u_{ik} \quad r_i(k) = \begin{cases} 
1 & \text{if } \tau^1_j = t_k \text{ for some } j \\
0 & \text{otherwise}
\end{cases}
$$

$$
u_i(t) = \tilde{u}_{ik} \quad t \in [t_k, t_{k+1}]
$$

Defining the matrices

$$
\Gamma_k = \text{diag}(g_1(k), \ldots, g_p(k))
$$

and

$$
\Omega_k = \text{diag}(r_1(k), \ldots, r_m(k))
$$

the multi-rate sample and hold operations can be written in compact form as

$$
S : \quad y(t) \in \mathcal{L}(\mathbb{R}^+) \rightarrow y_k \in l(\mathbb{Z}^+) \quad y_k = \Gamma_k y(t_k)
$$

$$
H : \quad u_k \in l(\mathbb{Z}^+) \rightarrow u(t) \in \mathcal{L}(\mathbb{R}^+) \quad \xi_{k+1} = (I - \Omega_k)\xi_k + \Omega_k u_k \quad \xi_{0} = 0
$$

$$
\tilde{u}_k = (I - \Omega_k)\xi_k + \Omega_k u_k 
$$

$$
u(t) = \tilde{u}_k \quad t \in [t_k, t_{k+1}]
$$

(5)

where due to the periodic nature of the sample and hold devices, for some positive integer $h$ which denotes the period, we have

$$
\Gamma_k = \Gamma_{k+h} \quad \Omega_k = \Omega_{k+h}.
$$

This set of $h$-periodic matrices completely characterize the multi-rate setup.

The operators $S : \mathcal{L}(\mathbb{R}^+) \rightarrow l(\mathbb{Z}^+)$ and $H : l(\mathbb{Z}^+) \rightarrow \mathcal{L}(\mathbb{R}^+)$ can be decomposed into

$S = \Gamma_d S_{ts}$ and $H = H_{ts} \Omega_d$, with

$$\begin{align*}
\Omega_d : u_{ik} \in l(\mathbb{Z}^+) \rightarrow \tilde{u}_k \in l(\mathbb{Z}^+) \\
\xi_{k+1} = (I - \Omega_k)\xi_k + \Omega_k u_k \quad \xi_{0} = 0 \\
\tilde{u}_k = (I - \Omega_k)\xi_k + \Omega_k u_k \\
\end{align*}
$$

$$\begin{align*}
H_{ts} : \tilde{u}_k \in l(\mathbb{Z}^+) \rightarrow u(t) \in \mathcal{L}(\mathbb{R}^+) \\
\xi_{k+1} = (I - \Omega_k)\xi_k + \Omega_k u_k \quad \xi_{0} = 0 \\
u(t) = \tilde{u}_k \quad t \in [t_k, t_{k+1}]
\end{align*}
$$

$$
\begin{align*}
S_{ts} : y(t) \in \mathcal{L}(\mathbb{R}^+) \rightarrow \tilde{y}_k \in l(\mathbb{Z}^+) \\
\tilde{y}_k = \begin{bmatrix} \tilde{y}_{mk} \\ \tilde{y}_{rk} \end{bmatrix} = y(t_k) \\
y_k = \Gamma_k \tilde{y}_k = \begin{bmatrix} \Gamma_{mk} & 0 \\ 0 & \Gamma_{rk} \end{bmatrix} \begin{bmatrix} \tilde{y}_{mk} \\ \tilde{y}_{rk} \end{bmatrix}
\end{align*}
$$

where $\Gamma_k = \begin{bmatrix} \Gamma_{mk} & 0 \\ 0 & \Gamma_{rk} \end{bmatrix}$ has been partitioned according to the output decomposition $y^T = [y_m^T \ y_r^T]$.

The following definitions will also be useful. Given the set of matrices $\Gamma_k, k = 0, \ldots, h-1$, we define $\Gamma$ as

$$
\Gamma = \text{diag}(\Gamma_0, \Gamma_1, \ldots, \Gamma_{h-1})
$$

(6)

which is of the form $\Gamma = \text{diag}([\gamma_1 \gamma_2 \ldots \gamma_{h \times p}]), \gamma_i = \begin{cases} 
1 & \text{if } i \in \{i_1, \ldots, i_n\} \\
0 & \text{otherwise}
\end{cases}$ and we also define a projection matrix $\Pi_\Gamma$ which extracts the nonzero components of $\Gamma v$, for some vector $v$

$$
\Pi_\Gamma v = [v_{i_1} \ v_{i_2} \ldots \ v_{i_n}]^T
$$

(7)

and verifies

$$
\Pi_\Gamma^T \Pi_\Gamma = \Gamma \quad \Pi_\Gamma \Pi_\Gamma^T = I_{n \times n} \quad \Pi_\Gamma = \Pi_\Gamma \Gamma.
$$
Matrices $\hat{\Gamma}_m, \hat{\Gamma}_r, \hat{\Omega}$ and $\Pi_{\Gamma_m}, \Pi_{\Gamma_r}, \Pi_{\Omega}$ are defined in the same manner. Similarly to $y(t)$, the values of $r(t)$ at sampling instants $t_k$ will be denoted by $\hat{r}_k$ and to take into account the multirate nature of the outputs we define $r_k = \Gamma_r \hat{r}_k$. We can then introduce the error variables $\hat{e}_k = y_k - \hat{r}_k$ and $e_k = y_k - r_k$.

2.3. Problem Statement

Given this setup the problem addressed in this paper can be stated as follows:

**Problem statement:**

I. For a fixed operating point $\alpha_0$, find a possibly time-varying discrete-time linear controller $C(\alpha_0) : [y_{m,sk}, e_{sk}] \rightarrow u_{sk}$

$$C(\alpha_0) = \begin{bmatrix} x_{sk+1}^e \\ u_{sk} \end{bmatrix} = \begin{bmatrix} A^e_k(\alpha_0) & B^e_{1k}(\alpha_0) & B^e_{2k}(\alpha_0) \\ C^e_k(\alpha_0) & D^e_{1k}(\alpha_0) & D^e_{2k}(\alpha_0) \end{bmatrix} \begin{bmatrix} x^e_{sk} \\ y_{msk} \\ e_{sk} \end{bmatrix}$$

for the linearization of the nonlinear plant (Eq. (4)) with interface $SH$ (Eq. (5)) that stabilizes the resulting closed-loop system and achieves zero steady-state error for $e_k$, where $u_{sk} = u_k - u_0$, $y_{msk} = y_{mk} - \Gamma_m h_0$, $y_{m0} = h_m(x_0, u_0)$ and $e_{sk} = e_k$.

II. Based on the family of linear controllers $C(\alpha_0)$, implement a discrete-time controller $K$, possibly nonlinear and time-varying, that verifies the linearization property and takes the form

$$K = \begin{cases} x^c_{k+1} = f_c(x^c_k, y_{mk}, e_k, \alpha_k, k) \\ u_k = h_c(x^c_k, y_{mk}, e_k, \alpha_k, k) \end{cases}$$

where $x^c_k \in \mathbb{R}^{n_k}$, and given its dependence on $\alpha_k$, the scheduling variable sampled at time $t_k$, $K$ is referred to as a gain-scheduled controller. By linearization property we formally mean that if we consider a family $\Sigma_c$ of equilibrium points for the controller compatible with $\Sigma$, defined in Eq. (2), such that

$$\Sigma_c = \{ x^c_0 : x^c_0 = f_c(x^c_0, y_{m0}, 0, \alpha_0, k), \ u_0 = h_c(x^c_0, y_{m0}, 0, \alpha_0, k), \ y_{m0} = h_m(x_0, u_0) \text{ and } (x_0, u_0, w_0) = a(\alpha_0), \alpha_0 \in \Xi \}$$

the controller $K$ linearizes to $C(\alpha_0)$, at each equilibrium point $\alpha_0$, that is,

$$\frac{\partial f_c}{\partial x^c}(a_c(\alpha_0), k) = A^c_k(\alpha_0), \quad \frac{\partial f_c}{\partial y_m}(a_c(\alpha_0), k) = B^c_{1k}(\alpha_0), \quad \frac{\partial f_c}{\partial e}(a_c(\alpha_0), k) = B^c_{2k}(\alpha_0)$$

$$\frac{\partial h_c}{\partial x^c}(a_c(\alpha_0), k) = C^c_k(\alpha_0), \quad \frac{\partial h_c}{\partial y_m}(a_c(\alpha_0), k) = D^c_{1k}(\alpha_0), \quad \frac{\partial h_c}{\partial e}(a_c(\alpha_0), k) = D^c_{2k}(\alpha_0), \quad a_c(\alpha_0) = (x^c_0, y_{m0}, 0, \alpha_0)$$

In Section 3 we propose a controller structure that solves Part I of the problem statement. This structure renders a simple implementation for the controller, which is described in Section 4, where we prove that the linearization property is verified for this implementation (Part II of the problem statement).

3. REGULATOR STRUCTURE

In this section we focus on proving the existence of a linear controller for the system $G_l$ defined in Eq. (4), with interface $SH$, given by Eq. (5), that achieves closed loop stability and zero steady-state error for the desired outputs. To simplify the notation, both the dependency on $\alpha_0$, which here is assumed a constant parameter, and the $\delta$ subscript, which indicates deviation from equilibrium variables, are dropped. For example, we will use $A$ instead of $A(\alpha_0)$ and $x(t)$ instead of $x_s(t)$. We will come back to this local point of view at the end of
the section. Furthermore, since $w(t)$, $z(t)$, and the associated matrices play no role in stability and regulation issues, they will also be temporarily disregarded. The equations for the plant are then simply given by

$$
G_l = \begin{cases}
\dot{x}(t) = Ax(t) + B_2u(t) \\
y(t) = \begin{bmatrix} y_m(t) \\ y_r(t) \end{bmatrix} = C_2x(t) = \begin{bmatrix} C_m \\ C_r \end{bmatrix} x(t)
\end{cases}
$$

Due to the periodic nature of the multi-rate sample and hold devices some of the systems involved in this paper will be linear periodically time-varying, and therefore we first review some of the results regarding periodic systems. Then we present an existing solution for the regulation of multi-rate square linear systems and propose a solution for the regulation of non-square systems.

### 3.1. Periodic systems theoretical background

Consider the discrete-time linear periodic system

$$
P = \begin{cases}
x_{k+1} = A_kx_k + B_ku_k \\
y_k = C_kx_k + D_ku_k
\end{cases}
$$

with initial time $k = 0$ and initial condition $x_0$ and where $A_k$, $B_k$, $C_k$, and $D_k$ are $h$-periodic matrices, for example, $A_k = A_{k+h}$. The lifted time-invariant system $\tilde{P}$ associated with $P$ is defined as

$$
\tilde{P} = \begin{cases}
\tilde{x}_{i+1} = \tilde{A}\tilde{x}_i + \tilde{B}\tilde{u}_i \\
\tilde{y}_i = \tilde{C}\tilde{x}_i + \tilde{D}\tilde{u}_i
\end{cases}
$$

where $\tilde{x}_i = x_{ih}$, $\tilde{A} = \begin{bmatrix} A_{ih} & 0 & \cdots & 0 \\ 0 & A_{ih+h} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{ih+h-1} \end{bmatrix}$, $\tilde{B} = \begin{bmatrix} B_{ih} & 0 & \cdots & 0 \\ 0 & B_{ih+h} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_{ih+h-1} \end{bmatrix}$, $\tilde{C} = \begin{bmatrix} C_{ih} & 0 & \cdots & 0 \\ 0 & C_{ih+h} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{ih+h-1} \end{bmatrix}$, and $\tilde{D} = \begin{bmatrix} D_{i,j} \end{bmatrix}$, $D_{i,j} = \begin{cases} 1 & i = j \\ 0 & i < j \end{cases}$

where $\Phi(i,j)$, is the transition matrix defined such that $\Phi(i,j) = A_{i-1}A_{i-2}\ldots A_j$, for $i > j$ and $\Phi(i,i) = 1$.

System $P$ is asymptotically stable, if and only if $\tilde{P}$ is asymptotically stable or equivalently all eigenvalues of matrix $\tilde{A}$ have norm less that one $\|\lambda_i(\tilde{A})\| < 1$, $\forall i$. These eigenvalues are called the characteristic multipliers of system $P$. Detectability and stabilizability are defined in the following way.

**Definition 3.1**

The periodic system $P$ is said to be stabilizable if there exists a set of periodic matrices $F_k$, $F_k = F_{k+h}$, such that $x_{k+1} = (A_k + B_kF_k)x_k$ is stable and it is said to be detectable if there exists a set of periodic matrices $G_k$, $G_k = G_{k+h}$, such that $x_{k+1} = (A_k + G_kC_k)x_k$ is stable.

Similarly to stability, these conditions can be verified using the lifted LTI system $\tilde{P}$ as stated in the following result.

**Lemma 1**

The periodic system $P$ is detectable (stabilizable) if and only if $\tilde{P}$ is detectable (stabilizable).

**Proof**

See Ref. [1].

The following is also true for periodic systems.

**Lemma 2**

The periodic system $P$ is detectable and stabilizable if and only if there exists a period linear controller $K_p : y_k \rightarrow u_k$ such that the closed loop system is asymptotically stable.
3.2. Regulation of multi-rate systems for square plants

For continuous-time and discrete-time single-rate systems, it is well-known that zero-error regulation for constant references of a number of outputs no greater than the number of inputs can be achieved by incorporating in the controller system a number of integrators equal to the number of tracking variables [8]. Regulation for constant references is not tied in with linearity and is achieved even in the presence of model uncertainties that do not affect closed loop stability. These integrators are usually placed after the system, directly integrating the regulated errors [10].

For the discrete-time multi-rate output regulation problem the structure depicted in Figure 2 is proposed in Ref. [5] for a square system*, which can be interpreted as a particular case of Eq. (11) with \( n_I = 0, n_r = p, m = p, C_r = C_2 \). The block \( C_I \) represents a periodically time-varying system whose state space description is given by

\[
\begin{align*}
    &x_{k+1} = x_k + \Omega_k u_k \\
    &y_k = x_k + \Omega_k u_k
\end{align*}
\]

and that integrates its input at the sampling instants at which the hold operation is active. The block \( C_K \) represents a linear controller that, in general, is required to be periodically time-varying. Notice that in this case integral action is applied at the input of the plant, because directly integrating the error would produce a non-constant signal at the plant’s input, given that \( C_K \) is generally time-varying.

As expected, integral action plays the key role in achieving zero-output regulation. In Ref. [5] it is proved that, under mild assumptions, the augmented system seen by the controller \( C_K \) is detectable and stabilizable. By Lemma 2 there exists a controller \( C_K \) that asymptotically stabilizes the closed loop system. The system trajectories will therefore converge to the unique equilibrium point that due to integral action and under the assumption that the discretization of \( G_l \) given in Eq (11) has no transmission zeros at \( z = 1 \), is characterized by \( u_k = u_0 \) and \( y_r(t) = r_0 \).

3.3. Regulation for non-square plants

For a large class of control problems the number of available outputs is greater than the number of actuators. This is generally the case for guidance and control problems for autonomous vehicles. It is well-known that in general we can only impose zero steady-state error for a number of outputs no greater than the number of inputs [8]. However we would like to take advantage of all the available outputs for control and not just the ones for which we require zero steady-state error. Besides improving the transient response, the use of the remaining

*Some small modifications have been made, namely notation and considering a slightly different system for integral action, \( C_I \). These changes however do not impact on the ideas and results presented in Ref. [5].
outputs can be in fact necessary in many applications to guarantee the detectability of the system. In general, assuming uncertainty on the coefficients of the matrices describing the plant, the remaining outputs of the plant \( y_{mk} \) have constant but unknown values at steady-state. Motivated by this discussion and by the velocity implementation [11], which will be described shortly, the regulator structure in Figure 3 is proposed.

\[
\begin{align*}
\dot{x}(t) & = A \dot{x}(t) + B u(t) + \Gamma D y_{mk} \\
y(t) & = C x(t) + \Gamma D \dot{e}_k
\end{align*}
\]

(15)

This system has the role of differentiating the output \( y_m \) at sampling instants at which the sampling operation is active. At steady-state the constant unknown values \( y_{m0} \) are differentiated bypassing the need to feedforward these values.

The periodic system \( C_D \) has state space realization given by

\[
C_D = \begin{cases}
\dot{x}^D_{k+1} = (I - \Gamma_m) x^D_k + \Gamma_m u^D_k \\
y^D_k = -\Gamma_m x^D_k + \Gamma_m u^D_k
\end{cases}
\]

Figure 3. Regulator structure for non-square systems

The periodic system \( C_D \) has state space realization given by

\[
C_D = \begin{cases}
\dot{x}^D_{k+1} = (I - \Gamma_m) x^D_k + \Gamma_m u^D_k \\
y^D_k = -\Gamma_m x^D_k + \Gamma_m u^D_k
\end{cases}
\]

This system has the role of differentiating the output \( y_m \) at sampling instants at which the sampling operation is active. At steady-state the constant unknown values \( y_{m0} \) are differentiated bypassing the need to feedforward these values.

The system \( G_a \) seen by the controller \( C_K \) to be synthesized (see Figure 3) is given by \( G_a = \Gamma D G_d \Omega_I \) where i) \( \Omega_I \) comprises the multi-rate input system \( \Omega_d \) and periodic integrator \( C_I \), ii) \( G_d \) the linear system with sample-hold interface and iii) \( \Gamma D \) the multi-rate output system \( \Gamma D \) and differentiator \( C_D \).

The operations of systems \( \Omega_d \) and \( C_I \) can be combined to yield the simple description of \( \Omega_I \), which is the same as \( C_I \), i.e.,

\[
\Omega_I = \begin{cases}
\dot{x}_{k+1} = x_k + \Omega y_k^C \\
\dot{u}_k = x_k + \Omega y_k^C
\end{cases}
\]

The equations for \( G_d = S_x G_d H_{ts} \) can be written as

\[
G_d = \begin{cases}
x_{k+1} = A_d x_k + B_d \dot{u}_k \\
\ddot{y}_k = \begin{bmatrix} \dot{y}_{mk} \\ \dot{y}_{rk} \end{bmatrix} = C_d x_k = \begin{bmatrix} C_{dm} \\ C_{dr} \end{bmatrix} x_k
\end{cases}
\]

(16)

where \( A_d = e^{A_d t} \), \( B_d = \int_{t_0}^{t} e^{A_d \tau} dB_2 \) and \( C_d = C_2 \). Finally the equations for \( \Gamma D \) are

\[
\Gamma D = \begin{cases}
x^D_{k+1} = (I - \Gamma_m) x^D_k + [\Gamma_m 0] \begin{bmatrix} \dot{y}_{mk} \\ \dot{e}_k \end{bmatrix} \\
y^D_k = \begin{bmatrix} -\Gamma_m \\ 0 \end{bmatrix} x^D_k + \begin{bmatrix} \Gamma_m & 0 \\ 0 & \Gamma_r \end{bmatrix} \begin{bmatrix} \dot{y}_{mk} \\ \dot{e}_k \end{bmatrix}
\end{cases}
\]

Computing the series of these three systems we obtain
The next theorem states sufficient conditions under which the system $G_a$ is detectable and stabilizable that only depend on the original discrete-time plant $G_d$, described by Eq. (16).

**Theorem 1**

Assume that the following conditions hold

i) $(A_d, B_d)$ is stabilizable and $(A_d, C_d)$ is detectable.

ii) Each output is sampled and each input is updated at least once in a period $T$, i.e.,

$$\forall i \exists k \in \{1, \ldots, h\} : (\Gamma_k)_{ii} = 1 \text{ and } \forall i \exists k \in \{1, \ldots, h\} : (\Omega_k)_{ii} = 1.$$

iii) If there exists $\lambda_k(A_d) = \lambda_k$ such that $\|\lambda_k\| = 1$, then $\lambda^*_h \neq 1$, and if there exists a pair $\lambda_i(A_d) = \lambda_i, \lambda_j(A_d) = \lambda_j$ such that $\lambda_i \neq \lambda_j, \|\lambda_i\| \geq 1$ and $\|\lambda_j\| \geq 1$ then $\lambda^*_h \neq \lambda^*_i$.

iv) There are no transmission zeros at $z = 1$ from the input of $G_d$ to the regulated output, i.e.,

$$\begin{bmatrix} A_d - I & B_d \\ C_d & 0 \end{bmatrix}$$

is full rank.

Then, the augmented periodic system $G_a$ is detectable and stabilizable.

**Proof**

See Appendix.

By Lemma 2 detectability and stabilizability guarantees the existence of an asymptotic stabilizing controller for the augmented system $G_a$. Due to the previous discussion, the following theorem comes as no surprise.

**Lemma 3**

Consider the feedback interconnection of $G_a$ and $C_K$ and suppose the controller $C_K$ asymptotically stabilizes the resulting closed loop system. Then, zero-error output regulation for $y_r(t)$ is achieved even in the presence of plant perturbations, provided that closed-loop stability is preserved.

**Proof**

See Appendix.

### 3.4. Solution to Part I of the Problem Statement

Suppose that the state space realization of an asymptotically stabilizing controller $C_K$ for plant $G_a$ is given by

$$C_K = \begin{bmatrix} x^k_{k+1} \\ y^k_k \end{bmatrix} = \begin{bmatrix} A^k_k & B^k_{1k} & B^k_{2k} \\ C^k_k & D^k_{1k} & D^k_{2k} \end{bmatrix} \begin{bmatrix} x^k_k \\ u^k_1 \\ u^k_2 \end{bmatrix}$$

(19)

Returning to the original problem, stated in Part I of the problem statement, of finding a local controller, with the properties therein referred, we rewrite the equations for $C_I, C_K$, and $C_D$ in the form
where we have added the dependency on $\alpha_0$ and the notation indicating that it is a local controller, for example, $x^K_i$ instead of $x^K_k$. These equations can be combined to yield

$$C(\alpha_0) = \begin{cases} 
\begin{bmatrix} x_{i+1}^K \\ y_{i+1}^K \\ e_{i+1}^K 
\end{bmatrix} = \begin{bmatrix} A^K_k(\alpha_0) & B^K_k(\alpha_0) & 0 \\
0 & I - \Gamma_{mk} & \Gamma_{mk} \\
\Omega_k C^K_k(\alpha_0) & -\Omega_k D^K_{1k}(\alpha_0) & \Gamma_{mk} 
\end{bmatrix} \begin{bmatrix} x^K_i \\ y_{imk}^D \\ e_{imk}^K 
\end{bmatrix} 
\end{cases}$$

where $x^c_i = [(x^K_i)^T (x^D_i)^T (x^I_i)^T]^T$ and

$$A^K_k(\alpha_0) = \begin{bmatrix} A^K_k(\alpha_0) & -B^K_k(\alpha_0)\Gamma_{mk} & 0 \\
0 & I - \Gamma_{mk} & 0 \\
\Omega_k C^K_k(\alpha_0) & -\Omega_k D^K_{1k}(\alpha_0) & \Gamma_{mk} 
\end{bmatrix} \quad B^{c}_{1k}(\alpha_0) = \begin{bmatrix} B^{c}_{1k}(\alpha_0)\Gamma_{mk} \\
\Omega_k D^{c}_{1k}(\alpha_0) \Gamma_{mk} 
\end{bmatrix}$$

$$B^{c}_{2k}(\alpha_0) = \begin{bmatrix} B^{c}_{2k}(\alpha_0) \\
\Omega_k D^{c}_{2k}(\alpha_0) 
\end{bmatrix} \quad C^{c}_k(\alpha_0) = \begin{bmatrix} \Omega_k C^{c}_k(\alpha_0) \\
-\Omega_k D^{c}_{1k}(\alpha_0) \Gamma_{mk} & I 
\end{bmatrix}$$

which constitutes a solution to Part I of the problem statement.

4. GAIN-SCHEDULING IMPLEMENTATION

The controller structure obtained in the last section is specially suited for a gain-scheduling implementation that verifies the linearization property, described in Part II of the problem statement. Next we present this implementation and establish its connection with the velocity implementation, which is a methodology for the discrete-time single-rate case to implement a gain-scheduling controller that verifies the referred linearization property.

4.1. Gain-scheduling implementation

Having designed the parameterized family of linear controllers $C(\alpha_0)$, Eq. (20), suppose we implement the gain-scheduled non-linear controller $K$ as follows

$$K(\alpha_k) = \begin{cases} 
\begin{bmatrix} x_{k+1}^K \\ y_{k+1}^K \\ e_{k+1}^K 
\end{bmatrix} = \begin{bmatrix} A^K_k(\alpha_k) & B^K_k(\alpha_k) & 0 \\
0 & I - \Gamma_{mk} & \Gamma_{mk} \\
\Omega_k C^K_k(\alpha_k) & -\Omega_k D^K_{1k}(\alpha_k) & \Gamma_{mk} 
\end{bmatrix} \begin{bmatrix} x^K_k \\ y_{imk}^D \\ e_{imk}^K 
\end{bmatrix} 
\end{cases}$$

where $x^c_k = [(x^K_k)^T (x^D_k)^T (x^I_k)^T]^T$ and

$$A^K_k(\alpha_k) = \begin{bmatrix} A^K_k(\alpha_k) & -B^K_k(\alpha_k)\Gamma_{mk} & 0 \\
0 & I - \Gamma_{mk} & 0 \\
\Omega_k C^K_k(\alpha_k) & -\Omega_k D^K_{1k}(\alpha_k) & \Gamma_{mk} 
\end{bmatrix} \quad B^{c}_{1k}(\alpha_k) = \begin{bmatrix} B^{c}_{1k}(\alpha_k)\Gamma_{mk} \\
\Omega_k D^{c}_{1k}(\alpha_k) \Gamma_{mk} 
\end{bmatrix}$$

$$B^{c}_{2k}(\alpha_k) = \begin{bmatrix} B^{c}_{2k}(\alpha_k) \\
\Omega_k D^{c}_{2k}(\alpha_k) 
\end{bmatrix} \quad C^{c}_k(\alpha_k) = \begin{bmatrix} \Omega_k C^{c}_k(\alpha_k) \\
-\Omega_k D^{c}_{1k}(\alpha_k) \Gamma_{mk} & I 
\end{bmatrix}$$

which constitutes a solution to Part I of the problem statement.
Notice that $\alpha_k$, which was considered to be a constant parameter during the design process, now becomes a scheduling variable computed on-line from the plant outputs and exogenous variables. Due to the multi-rate nature of the output, the system described by Eq. (23.5) is used to perform a hold operation on the output variables. Due to the multi-rate nature of the output, the system described by Eq. (23.5) is used now becomes a scheduling variable computed on-line from the plant outputs and exogenous parameter, these are the unique equilibrium points of the controller compatible with those of the designed controller $C(\alpha_0)$, and therefore $K$ constitutes a solution to Part II of the problem statement.

**Theorem 2**
Suppose for each parameter vector $\alpha_0 \in \Xi$, the feedback interconnection of the linearized system $G_l(\alpha_0)$, described by Eq. (4), and the designed controller $C(\alpha_0)$, described by Eq. (8), with multi-rate sample-data interface is asymptotically stable. Then the feedback interconnection of the multi-rate nonlinear system and gain-scheduled controller $K$, described by Eq. (23), admits a unique equilibrium point associated with $\alpha_0$ and the linearization of $K$, about this equilibrium coincides with the designed controller $C(\alpha_0)$, given by Eq. (20).

**Proof**
It is easy to verify that the equilibrium points for Eq. (23) defined in Eq. (10) are

$$x^K = 0, \ y^K = 0, \ x'^o = y_m^o, \ y'^o = 0, \ x'_d = u_0, \ e = 0, \ w = u_0.$$  \hfill(26)

Due to asymptotic stability and the linearity of the controller for each fixed value of the parameter, these are the unique equilibrium points of the controller compatible with those of the plant $\Sigma$. Defining the matrix

$$M(\alpha_k) = \begin{bmatrix} A^K_k(\alpha_k) & B^K_{1k}(\alpha_k) & B^K_{2k}(\alpha_k) \\ C^K_k(\alpha_k) & D^K_{1k}(\alpha_k) & D^K_{2k}(\alpha_k) \end{bmatrix}$$
the linearization of Eq. (23) about Eq. (26) can be written as

$$
K_I = \begin{cases}
\begin{bmatrix}
x_{\delta k+1}^D \\
y_{\delta k+1}^D \\
x_{\delta k+1}^C \\
y_{\delta k+1}^C
\end{bmatrix} = M(\alpha_k) \begin{bmatrix}
x_k^D \\
y_k^D \\
x_k^C \\
y_k^C
\end{bmatrix} + \\
H.C.T
\end{cases}
$$

where H.C.T are the hidden coupling terms which result from introducing the scheduling variable $\alpha_k$. Due to the special structure of the controller these terms cancel out when evaluated at equilibrium (Eq. (26)) since all its components are multiplied by one of the components of $x_k^C, y_k^C$ of $e_k$, which are zero at equilibrium. The linearization reduces then to Eq. (20) concluding the proof.

4.2. Connection with the velocity implementation

The velocity implementation, presented in Ref. [11], is a method for implementing a gain-scheduled controller with integral action that verifies the linearization property. For the discrete-time single-rate case, see Ref. [10]. The method can be briefly explained as follows. Suppose that for a family of linear discrete-time single-rate plants one has designed a family of linear controllers with the structure

$$
C(\alpha_0) = \begin{cases}
x_{\delta k+1}^K = A^K(\alpha_0)x_{\delta k}^K + B^K_1(\alpha_0)y_{m\delta k} + B^K_2(\alpha_0)y_{\delta k}^I \\
u_{\delta k} = C^K(\alpha_0)x_{\delta k}^K + D^K_1(\alpha_0)y_{m\delta k} + D^K_2(\alpha_0)y_{\delta k}^I \\
x_{\delta k+1}^I = x_{\delta k}^I + (y_{r\delta k} - r_{\delta k}) \\
y_{\delta k}^I = x_{\delta k}^I + (y_{r\delta k} - r_{\delta k})
\end{cases}
$$

where we consider a non-strictly proper integrator to conform with the present formulation. Suppose also that we implement the non-linear controller moving the integrators to the front of the controller (input of the plant) as shown in Figure 4. Again, $\alpha_k$ which was assumed constant throughout the design process, becomes a time-varying scheduling variable through the dependence $\alpha_k = v(y_k, w_k)$. The equations for this implemented controller are

$$
K(\alpha_k) = \begin{cases}
x_{k+1} = A^K(\alpha_k)x_k + B^K_1(\alpha_k)(y_{mk} - y_k^D) + B^K_2(\alpha_k)(y_{rk} - r_k) \\
x_{k+1}^I = x_k^I + C^K(\alpha_k)x_k^I + D^K_1(\alpha_k)(y_{mk} - y_k^D) + D^K_2(\alpha_k)(y_{rk} - r_k) \\
y_{k}^D = y_{mk} \\
y_k^D = x_k^D \\
\alpha_k = v(y_k, w_k) \\
u_k = x_k^I + C^K(\alpha_k)x_k^I + D^K_1(\alpha_k)(y_{mk} - y_k^D) + D^K_2(\alpha_k)(y_{rk} - r_k)
\end{cases}
$$

The idea behind moving the integrators is that of building a linear equivalent controller for constant parameter values that when implemented as a nonlinear controller gain-scheduled on $\alpha_k$ verifies the linearization property. Since at equilibrium the input of $C_d(\alpha_k)$ is zero-valued, it follows that the so-called hidden coupling terms of the linearized controller, which are due to the introduction of $\alpha_k$, are all canceled out (this argument was also the basis for proving Theorem 2). It is easy to see that in general this does not occur for other controller implementations (see Ref. [16], [11], [12] for examples).
There is a close relationship between the velocity implementation and the method presented herein when the multi-rate setup is particularized to the single-rate case. In the single rate case we have $\Gamma_k = I$, $\forall k$ and $\Omega_k = I$ $\forall k$, from which equations (14) and (15) reduce to simple integrators and differentiators and therefore the controller described by Eq. (20) acquires the same structure as that shown in Figure 4(b). However the point of view is somewhat different. While in the velocity implementation method, the controller could be synthesized by augmenting the state with the integrators at the front of the plant, which includes, for example, P.I. controllers when the state is available, the same principle can not be applied in the multi-rate case. Instead, the synthesized controller takes into account in the design the differentiator at the output and the integrators at the input of the plant. Nevertheless we stress that we do not make any assumption on how the controller is synthesized either for the multi-rate case or for the particular case of single-rate (Lemma 2 assures that a stabilizing controller exists) and that the set of stabilizing controllers for either one of the single-rate structures show in Figure 4 is the same, when frozen-time values of the parameters are considered.

4.3. Outline of the proposed method

The following procedure outlines the method proposed for the design and implementation of gain-scheduled controllers for multi-rate systems:

1. Given a nonlinear system in the form described by Eq. (1), with multi-rate input and output interface SH described by Eq. (5), obtain a family of parameter-dependent linear models in the form of Eq. (4).
2. Design a family of linear controllers with the structure of Eqs. (21) and (22). Theorem 1 along with Lemma 2 guarantee that for each fixed value of the schedule parameter a stabilizing controller exists, under mild assumptions.
3. Implement the non-linear gain-scheduled controller according to Eq. (23). Theorem 2 assures that the linearization property is verified.

5. TRAJECTORY TRACKING CONTROL FOR AUTONOMOUS ROTORCRAFT

In this section the proposed method is applied to the control of an autonomous rotorcraft. To this end, the dynamics model of a small-scale helicopter, parameterized for the Vario X-treme R/C helicopter[7], is used. We address a trajectory tracking control problem, which can be described as the problem of steering a vehicle along a predefined trajectory defined in terms of space and time coordinates. The solution presented relies on the definition of an adequate error space to express the model of the vehicle[17]. The following section briefly describes the helicopter dynamic model.

5.1. Vehicle Dynamic Model

The helicopter dynamics are described using the conventional six degree of freedom rigid body equations.
\[
\begin{align*}
\dot{v} &= f(v, \omega, u) + R^{-1}(\lambda)[0, 0, 0]^T \\
\dot{\omega} &= n(v, \omega, u) \\
\dot{p} &= R(\lambda)v \\
\dot{\lambda} &= Q(\phi_B, \theta_B) \omega
\end{align*}
\]

where \((p, R) \in SE(3) \triangleq \mathbb{R}^3 \times SO(3)\) denotes the configuration of the body frame \(\{B\}\) attached to the vehicle’s center of mass with respect to the inertial frame \(\{I\}\) and the rotation matrix \(R = R(\lambda)\) can be parameterized by the Z-Y-X Euler angles \(\lambda = [\phi_B, \theta_B, \psi_B]^T\), \(\theta_B \in [-\pi/2, \pi/2]\), \(\phi_B, \psi_B \in \mathbb{R}\), \(R = Rx(\psi_B)Ry(\theta_B)Rx(\phi_B)\). The inertial frame \(\{I\}\) is such that its \(z\)-axis is aligned with the gravity vector. The linear and angular body velocities are denoted by \(v = [u_B, v_B, w_B]^T \in \mathbb{R}^3\) and \(\omega = [p_B, q_B, r_B]^T \in \mathbb{R}^3\), respectively. Notice that the gravitational term \(f_B(\phi_B, \theta_B) = R^{-1}(\lambda)[0, 0, 0]^T\) depends only on the roll and pitch angles and that the Euler angles rates \(\dot{\lambda}\) and the angular velocities are related by the well-known transformation matrix \(Q(\phi_B, \theta_B)\).

The actuation \(u = [\theta_0, \theta_1s, \theta_1c, \theta_3u]\) comprises the main rotor collective input \(\theta_0\), the main rotor cyclic inputs, \(\theta_1s\) and \(\theta_1c\), and the tail rotor collective input \(\theta_3u\). The dynamic equations for the helicopter are highly non-linear and its derivation is only accomplishable assuming several simplifications. For a detailed explanation of the modeling of the small-scale helicopter used in this paper the reader is referred to Ref. [7].

5.2. Generalized error dynamics

The integrated guidance and control strategy proposed in Ref. [17] for the trajectory tracking problem, consists of defining a convenient non-linear transformation to be applied to the vehicle dynamic and kinematic model. In the new error space the trajectory tracking problem is reduced to that of regulating the error variables to zero using the fact that the linearization of the error dynamics is time-invariant about any trimming trajectories. It is well-known that these comprise helix and straight lines, parameterized by the vehicle linear speed, flight path angle, yaw rate and yaw angle with respect to the path [17]. Thus, the control design for the trajectory tracking problem can be solved by using tools that borrow from gain scheduling control theory, where the aforementioned parameters play the role of scheduling variables that interpolate the parameters of linear controllers designed for a finite number of representative trimming trajectories.

In order to define the non-linear transformation we start by formally introducing the trimming trajectories. Consider the helicopter equations of motion presented in Eq. (27), and let \(v_c, \omega_c, p_c, \lambda_c = [\phi_c, \theta_c, \psi_c]^T\) and \(u_c\) denote the trimming values of the state and input vectors, respectively. At trimming, these vectors satisfy \(\dot{v}_c = 0\) and \(\dot{\omega}_c = 0\), implying that \(\dot{u}_c = 0, \dot{\phi}_0 = 0\) and \(\dot{\theta}_c = 0\). Given the dependence of the gravitational terms on the roll and pitch angles, only the yaw angle can change without violating the equilibrium condition. However, \(\psi_c\) satisfies

\[
\begin{bmatrix}
0 \\
0 \\
\dot{\psi}_c
\end{bmatrix} = Q(\phi_c, \theta_c) \omega_c
\]

and thus the yaw rate \(\dot{\psi}_c\) is constant. From this analysis it is easy to show [17] that trimming trajectories correspond to helices (which degenerate into straight lines when \(\psi_c = 0\)) that can be described by

\[
\lambda_c = \begin{bmatrix}
\phi_c \\
\theta_c \\
\psi_c t + \psi_0 + \psi_{CT}
\end{bmatrix},
\quad
p_c = \begin{bmatrix}
\frac{V_c}{\psi_c} \cos(\gamma_c) \sin(\psi_c t + \psi_0) \\
\frac{V_c}{\psi_c} \cos(\gamma_c) \cos(\psi_c t + \psi_0) \\
-V_c \sin(\gamma_c) t
\end{bmatrix} + \begin{bmatrix}
x_0 \\
y_0 \\
z_0
\end{bmatrix},
\]

where \(V_c = \|v_c\|\) is the linear body speed and \(\gamma_c\) is the flight path angle. Therefore, apart from a \(z\)-rotation and a translation, the parameter vector \((V_c, \gamma_c, \psi_c, \phi_c, \theta_c, \psi_{CT})\) completely
characterizes a trimming trajectory. As explained in Ref. [6], due to the tail rotor actuation, helicopters can describe trimming trajectories with arbitrary but constant yaw angle relative to the path, that is, with arbitrary \( \psi_{CT} \). However the roll and pitch angles \( \phi_c \) and \( \theta_c \) are automatically constrained by this choice. The trimming trajectory can thus be described by the following parameterization

\[
\xi_0 = [V_C \quad \gamma_C \quad \dot{\psi}_C \quad \psi_{CT}]^T
\]

Moreover, introducing \( \xi = (V, \gamma, \dot{\psi}, \psi) \)

\[
V = ||v|| \quad \gamma = \arctan(-\frac{w_P'}{u_B'}) \quad \dot{\psi} = \psi_B \quad \psi = \psi_B - \psi_0 \quad , \quad \begin{bmatrix} u_B' \\ v_B' \\ w_B' \end{bmatrix} = R \begin{bmatrix} u_B \\ v_B \\ w_B \end{bmatrix}
\] (28)

we have at equilibrium \( \xi = \xi_0 \), and therefore \( \xi \) conforms with the general description of scheduling variable given in Section 2.

The generalized error vector relating the vehicle state and the commanded trajectory parameterized by \( \xi_0 \) can be defined using the nonlinear transformation

\[
x_e = \begin{bmatrix} v_e \\ \omega_e \\ p_e \\ \lambda_e \end{bmatrix} = \begin{bmatrix} v - v_C \\ \omega - \omega_C \\ R^{-1}(p_B - p_C) \\ Q^{-1}(\lambda_B - \lambda_C) \end{bmatrix}
\] (29)

Since \( \dot{v}_C = 0 \) and \( \dot{\omega}_C = 0 \) for any trimming trajectory, the nonlinear error dynamics can be written as[17]

\[
G = \begin{cases}
\dot{v}_e = \dot{v} \\
\dot{\omega}_e = \dot{\omega} \\
\dot{p}_e = v_B - R^{-1}_e v_C - S(\omega) p_e \\
\dot{\lambda}_e = \omega - Q^{-1}_C \omega C - (\frac{Q}{2} Q^{-1}) Q \lambda_e
\end{cases}
\] (30)

where \( R^{-1}_e = R^{-1}(\phi_c, \theta_c) \), \( Q_C = Q(\phi_c, \theta_c) \) and \( S(\omega) \) is a skew-symmetric matrix defined such that \( S(\omega) = [\omega \times] \).

The output vector for which we require steady-state tracking is defined as

\[
y_{err} = \begin{bmatrix} p_e \\ \psi_e \end{bmatrix} , \quad \psi_e = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \lambda_e
\]

It is straightforward to obtain that \( y_{err} = 0 \) implies \( x_e = 0 \) and that the vehicle will follow the path with the desired linear speed and orientation if and only if \( x_e = 0 \). As mentioned in the next section, the state is assumed available, although at different rates, and thus we have

\[
y_{err} = x_e
\]

For the sake of simplicity, in this particular case study, the vector \( \xi_0 \) is partitioned according to \( \xi_0 = [\varphi_0 \quad \alpha_0] \), where \( \varphi_0 \) is constant and \( \alpha_0 \) is allowed to vary and we consider paths formed by the concatenation of trimming trajectories that can be parameterized by \( \alpha_0 \) only. By imposing this restriction on the reference trajectories and considering a similar partition for the scheduling variable \( \xi = [\varphi \quad \alpha] \), we can assume that \( \varphi \) does not change significantly between trajectories. Then, the linearization of Eq. (30) about the equilibrium \( (x_e = 0, u = u_C) \), or equivalently, the linearization of Eq. (27) about \( \alpha_0 \), can be written in compact form as

\[
G_t(\alpha_0) = \begin{cases}
\dot{x}_{es} = A_e(\alpha_0)x_{es} + B_e(\alpha_0)u_s \\
y_{err_s} = x_{es} \\
y_{err_s} = C_{er}(\alpha_0)x_{es}
\end{cases}
\] (31)
where \( x_{es} = x_e \), \( u_s = u - u_C \), \( y_{ers} = y_e \), \( y_{ems} = y_m \), and \( C_{er}(\alpha_0) = \begin{bmatrix} 0 & I_3 & 0 \\ 0 & 0 & [0 0 1] \end{bmatrix} \). For details on the matrices of the linearization see Ref. [17]. With respect to Section 2, \( G_l(\alpha_0) \) is the parameterized local system model, described by Eq. (4), for which the controller is to be designed.

5.3. Multi-rate characteristics of the sensors

As already mentioned, for an autonomous vehicle the dynamic and kinematic state-variables comprise linear and angular velocities, position and orientation which are usually available at different rates (for example the position is typically measured by a GPS receiver which imposes a slow rate). In the present paper we assume that the state variables of the vehicle corresponding to linear and angular velocities and orientation are measured at a sampling rate of 50 Hz, which corresponds to a sampling period \( t_s = 0.02 \) s, whereas the position variables are measured at a sampling rate of 2.5 Hz, corresponding to a sampling rate of \( t_{sp} = 0.4 \) s. The actuators are assumed synchronous and updated at a rate of 50 Hz. According to these sampling rates, the \( h \)-periodic matrices \( \Gamma_{mk}, \Gamma_{rk} \) and \( \Omega_k \) that characterize the multi-rate setup, defined in Section 2, are given by

\[
\begin{align*}
\Omega_k &= I_4 \\
\Gamma_{mk} &= \begin{cases} I_{12} & k = 0 \\
\text{diag}([1_3 1_3 0_3 1_3]) & \text{otherwise}
\end{cases} \\
\Gamma_{rk} &= \begin{cases} I_4 & k = 0 \\
\text{diag}([0_3 1]) & \text{otherwise}
\end{cases}
\end{align*}
\]

where \( h = 20 \).

5.4. Controller Synthesis and Implementation

The commonly used method for the design of a family of controllers for the parameterized family of models described by Eq. (31), which is also adopted in the present paper, comprises the following steps: i) obtain a finite set of parameter values from the discretization of the continuous parameter space, ii) synthesize a linear controller for each linear plant, described by Eq. (31), obtained from the linearization of the nonlinear plant for each value of the schedule parameter, iii) interpolate the coefficients of the linear controllers to obtain a continuously parameter-varying controller.

We have restricted the parameter space to \( \alpha = \gamma \), which means that the synthesized controllers are valid in operating conditions where the remaining parameters \( \varphi = (V, \dot{\psi}, \psi) \) do not change significantly about nominal values \((V_C, \dot{\psi}_C, \psi_C)\). The finite set of values for the discretization of this one-dimensional parameter space was chosen to be

\[
\bar{\alpha}_0 = \{ \bar{\alpha}_0 \} = [-50 -40 -30 -20 -10 0 10 20 30 40 50] \frac{\pi}{180} \text{ rad.}
\]

so that the conditions under which the vehicle is expected to operate include straight lines \( \dot{\psi}_C = 0 \) and \( \pi \)-aligned helices \( \dot{\psi}_C \neq 0 \), with a flight path angle between -50 and 50 degrees, that the vehicle is required to follow with constant velocity, yaw rate and orientation with respect to the path \((V, \dot{\psi}, \psi) = (V_C, \dot{\psi}_C, \psi_C))\).

For each fixed value of \( \alpha_0 \), the standard output feedback \( H_2 \) formulation for periodic system was used to synthesize a controller \( C_K \) for the augmented system \( G_a \), described by Eq. (17), where \( A_d, B_d, C_d \) are the discretizations of system matrices of Eq. (31). Notice that \( G_a \) has a number of states equal to \( n + m + n_y = 12 + 4 + 12 = 28 \) and a number of outputs equal to \( n_y_m + n_y_r = 12 + 4 = 16 \). For an \( h \)-periodic system \( G \) of the form

\[
G := \begin{cases} \\
\begin{aligned}
x_{k+1} &= A_k x_k + B_{1k} w_k + B_{2k} u_k \\
y_k &= C_{1k} x_k + D_{11k} w_k + D_{12k} u_k \\
z_k &= C_{2k} x_k + D_{21k} w_k + D_{22k} u_k
\end{aligned}
\end{cases}
\]

where \( x_k = \begin{bmatrix} x_{k,1} & \cdots & x_{k,n} \end{bmatrix}^\top \), \( y_k = \begin{bmatrix} y_{k,1} & \cdots & y_{k,m} \end{bmatrix}^\top \), \( z_k = \begin{bmatrix} z_{k,1} & \cdots & z_{k,m} \end{bmatrix}^\top \), \( u_k = \begin{bmatrix} u_{k,1} & \cdots & u_{k,m} \end{bmatrix}^\top \), \( w_k = \begin{bmatrix} w_{k,1} & \cdots & w_{k,m} \end{bmatrix}^\top \) and \( A_k, B_k, C_k \) are matrices of size \( n \times n, n \times m, m \times n \) respectively, and \( \alpha \) is a parameter of the system model. The state vector is split into \( x_k = (x_m, x_r)^\top \) where \( x_m = \begin{bmatrix} x_{m,1} & \cdots & x_{m,n} \end{bmatrix}^\top \) and \( x_r = \begin{bmatrix} x_{r,1} & \cdots & x_{r,m} \end{bmatrix}^\top \).
with $D_{11k} = 0$, the $\mathcal{H}_2$ control problem can be interpreted as the problem of finding a linear $k$-periodic controller $K : y_k \mapsto u_k$ that minimizes the average over one period of the norms of the impulse responses of the closed-loop system,

$$G_{cl} := \left\{ \begin{array}{l}
\dot{x}_{k+1} = A_k x_k + B_{1k} w_k \\
z_{k} = C_{1k} x_{k}
\end{array} \right.$$

which can be written as

$$\|G_{cl}\|_2 = \left( \frac{1}{h} \sum_{j=0}^{h-1} \sum_{i=1}^{n_w} \|G_{cl}\delta(k-j)e_i\|_2 \right)^{\frac{1}{2}}.$$  \hspace{1cm} (33)

where $G_{cl}\delta(k-j)e_i$ denotes the output response to an impulse applied at input $i$ and time $j$. The solution to this problem can be obtained by solving two periodic Riccati equations [2] or by the solution of two LMI optimization problems [19]. The matrices associated with the performance channel $w_k \mapsto z_k$ are typically used as tuning knobs to improve the performance during extensive simulations. For the results presented in the next subsection, these performance matrices were chosen to be independent of $k$ and $\alpha_0$.

The resulting finite set of synthesized controller coefficients, for example $\{A^c_k(\bar{\alpha}_0)\}$, were interpolated using least squares fitting yielding a family of continuously parameter dependent controllers, corresponding to Eq. (21), whose describing matrices are quadratically parameter dependent, for example

$$A^c_k(\alpha_0) = A^{c1}_k + \alpha_0 A^{c2}_k + \alpha_0^2 A^{c3}_k$$

The disadvantage of this technique is that by the interpolation process there is no guarantees that, even for fixed parameter values, the controller obtained by interpolation stabilizes the closed loop system. An a posteriori analysis showed that for a dense grid of fixed values of $\alpha_0$ the closed loop system is stabilized.

Having designed the family of controllers $C(\alpha_0)$, the non-linear controller $K(\alpha_k)$ can be implemented as in Eq. (23), where $\alpha_k = \gamma_k$ becomes a time-varying parameter computed according to Eq. (28). The final implementation scheme is shown in Figure 5. Notice that system $C_I$ in this particular case degenerates into simple integrators $C_I = \frac{1}{1-z} I_4$ since the actuators were considered synchronous and updated at a sampling rate of 50 Hz.

**Figure 5.** Block diagram with the final implementation scheme

Some additional features of this implementation are worthwhile emphasizing. The placement of the integrators at the plant’s input, has the following advantages: i) the implementation
of anti-windup schemes is straightforward  

\[ ii) \text{ auto-trimming property- the controller automatically generates adequate trimming values for the actuation signals.} \]

Though in the present case simple integrators are being used, the same advantages would hold if the inputs were updated at different rates and the integrators took the form of \( \Omega_i \), Eq.(14).

5.5. Simulation Results

We start with a simple example that compares the performance of a multi-rate guidance and control law with that obtained using a standard single-rate \( \mathcal{H}_2 \) compensator designed using equivalent weighting matrices. First, we compare the values of the closed-loop \( \mathcal{H}_2 \) norms while changing the rate of the linear position measurement and keeping the sampling periods of the other outputs and of the input at \( t_s = 0.02 \text{ s} \). The periodic \( \mathcal{H}_2 \) controllers were synthesized for a single operating condition, characterized by \( \xi_0 = [V_C \; \gamma_C \; \psi_{CT}]^T = [1 \text{ m.s}^{-1} \; 0 \text{ rad} \; 0 \text{ rad.s}^{-1} \; 0 \text{ rad}]^T \). The results are shown in Table I.

Notice that when the sampling rate of the linear position measurement equals the sampling rate of the other outputs (\( t_s = 0.02 \text{ s} \)), the multi-rate set-up particularizes to the single-rate case and the periodic \( \mathcal{H}_2 \) controller is equivalent to a standard discrete-time \( \mathcal{H}_2 \) controller. As expected, the performance of the closed-loop system, given in terms of the \( \mathcal{H}_2 \) norm, deteriorates as the sampling period for the linear position increases. In order to assess the impact of this performance loss on the tracking response of the vehicle, a simple maneuver task is set up for the rotorcraft. During the maneuver the vehicle is required to follow a path with constant velocity \( V_C = 1 \text{ m.s}^{-1} \) and constant orientation with respect to the path, consisting of:  

\[ i) \text{ a level flight segment along the x axis, } \]

\[ ii) \text{ a climbing ramp with a flight path angle of } \gamma_C = \frac{\pi}{3} \text{ rad, } \]

\[ iii) \text{ a level flight segment along the x axis.} \]

A gain-scheduled controller was synthesized following the procedure given in Section 5.5.4 for constant parameters \( \varphi_0 = (V_C, \psi_C, \psi_{CT}) = (1 \text{ m.s}^{-1}, 0 \text{ rad.s}^{-1}, 0 \text{ rad}) \). For the single-rate case, all the outputs are measured at a sampling rate of \( t_s = 0.02 \text{ s} \), and for the multi-rate case, the sampling rates are given according to Section 5.5.3. The results comparing these two cases, which include the temporal evolution of the actuation, dynamic variables \( v \) and \( \omega \), and kinematic errors \( p_e = p_e - p_e = [x_e \; y_e \; z_e]^T \) and \( \lambda_e = \lambda_e - \lambda_e = [\phi_e \; \theta_e \; \psi_e]^T \), are shown in Figure 6.

As expected, we can observe some degradation in the actuation and error responses for the multi-rate case in comparison with the single-rate case. Nevertheless, while the proposed method takes into account the multi-rate characteristics of the sensors, it also achieves good tracking performance and displays a smooth behavior throughout the different stages of the trajectory. Notice also that, as desired, steady-state is achieved after the transitions between trimming trajectories, with zero-steady-state value for \( y_{er} = [p_e \; \psi_e] \), and that the trimming values for the actuation are naturally acquired.

Another simulation is presented in order to test the proposed methodology in other flight conditions as well as analyze the impact of noise in the sensors. In this simulation the vehicle is required to follow a path with constant velocity \( V_C = 5 \text{ m.s}^{-1} \) and constant orientation with respect to the path, consisting of  

\[ i) \text{ a level flight segment along the x axis, } \]

\[ ii) \text{ a climbing helix with a flight path angle of } \gamma_C = 0.29 \text{ rad and yaw rate } \psi_C = 0.26 \text{ rad.s}^{-1}, \]

\[ iii) \text{ a level flight segment along the x axis.} \]

The controller is synthesized according to the methodology presented in Section 5.5.4 for constant parameters \( \varphi_0 = (V_C, \psi_C, \psi_{CT}) = (5 \text{ m.s}^{-1}, 0 \text{ rad.s}^{-1}, 0 \text{ rad}) \) and the weights of the \( \mathcal{H}_2 \) controller synthesis problem, described in Eq. (32) are changed to accommodate for the different operating conditions. We have considered additive white gaussian noise for all the measurements with autocorrelations matrices \( (R_{vv}(\tau), R_{\omega\omega}(\tau), R_{pp}(\tau), R_{\lambda\lambda}(\tau) = (\sigma_v^2 I \delta(\tau), \sigma_\omega^2 I \delta(\tau), \sigma_p^2 I \delta(\tau), \sigma_\lambda^2 I \delta(\tau)), \) where
(σ_v, σ_ω, σ_p, σ_λ) = (0.02 m.s^{-1}, 0.3°.s^{-1}, 0.1 m, 0.5°). The results presented in Figure 7 show that good sensor noise rejection is achieved and that the helicopter performs the required task.
keeping the actuation within the limits of operation. A 3-D view of both maneuvers is shown in Figure 8.

![Figure 7. Results for the second simulation](image)

![Figure 8. Rotorcraft Maneuvers](image)
6. CONCLUSIONS

A new method was proposed for the design and implementation of gain-scheduled controllers for multi-rate systems with application on the field of integrated guidance and control for autonomous vehicles. In contrast to previous approaches, where the multi-rate characteristics of the sensors are handled by the navigation system, this approach provides an alternative framework that directly takes into account these characteristics in the control system.

A theoretical formulation was presented to tackle the problem of designing and implementing gain-scheduled controllers for non-square multi-rate systems. The formulation is valid for a wide class of non-linear plants and its applicability to other control problems is an interesting topic for future work.

The proposed technique was applied to provide a solution to the design of integrated guidance and control systems that address the trajectory tracking problem for small-scale rotorcraft. Simulation results illustrate the effectiveness of the controller along simple maneuvers when the vehicle linear position is measured at a lower rate than that of the remaining state variables.

APPENDIX

Proof (of Theorem 1) The system $G_a$ described by Eq. (17), can be seen as the series connection of two systems $G_a = G_{a1}G_{a2}$, where

$$G_{a1} = \left\{ \begin{array}{l}
x_{k+1} = F x_k + G \Omega_k u_k \\
y_k = \begin{bmatrix} y_{mk} \\ y_{rk} \end{bmatrix} = \Gamma_k \begin{bmatrix} H_m \\ H_r \end{bmatrix} x_k = \begin{bmatrix} \Gamma_{mk} & 0 \\ 0 & \Gamma_{rk} \end{bmatrix} \begin{bmatrix} H_m \\ H_r \end{bmatrix} x_k,
\end{array}\right.$$ (34)

$$F = \begin{bmatrix} A_d & B_d \\ 0 & I \end{bmatrix}, \quad G = \begin{bmatrix} B_d \\ I \end{bmatrix}, \quad H_m = \begin{bmatrix} C_{dm} \\ 0 \end{bmatrix}, \quad H_r = \begin{bmatrix} C_{dr} \\ 0 \end{bmatrix},$$ (35)

and

$$G_{a2} = \left\{ \begin{array}{l}
x_{k+1}^D = (I - \Gamma_{mk}) x_k^D + \begin{bmatrix} \Gamma_{mk} \\ 0 \end{bmatrix} u_k^D \\
y_k^D = - \begin{bmatrix} \Gamma_{mk} \\ 0 \end{bmatrix} x_k^D + \begin{bmatrix} \Gamma_{mk} \\ 0 \end{bmatrix} u_k^D.
\end{array}\right.$$ (36)

By Lemma 1 it suffices to establish that the lift $\hat{G}_a$ of system $G_a$ is detectable and stabilizable. This LTI system $G_a$ can be determined by computing separately the lifts of $G_{a1}$ and $G_{a2}$ and using the fact that the lift of the series of two systems is the series of the lifts of each one, i.e., $\hat{G}_a = G_{a2}\hat{G}_{a1}$. For simplicity, we restrict $u$, $y_r$, and $y_m$ to be 1-dimensional signals, i.e. $u, y_r, y_m \in l(\mathbb{Z}^+, \mathbb{R})$. The proof for the general case follows the same ideas but the algebra is more cumbersome.

Let $P$ be a permutation matrix such that

$$\begin{bmatrix} y_{ml} \\ y_{rl} \end{bmatrix} = P \begin{bmatrix} \tilde{y}_{ml} \\ \tilde{y}_{rl} \end{bmatrix}$$

where

$$\begin{bmatrix} y_{ml} \\ y_{rl} \end{bmatrix} = \begin{bmatrix} y_{ml} & y_{rl} & y_{ml+1} & y_{rl+1} & \ldots & y_{ml+h-1} & y_{rl+h-1} \end{bmatrix}^T,$$

$$\tilde{y}_{ml} = \begin{bmatrix} y_{ml} & y_{ml+1} & \ldots & y_{ml+h-1} \end{bmatrix}^T$$

and

$$\begin{bmatrix} \bar{H}_m \\ \bar{H}_r \end{bmatrix} = \begin{bmatrix} H_m \\ H_m F \\ \vdots \\ H_m F^{h-1} \\ H_r \\ H_r F \\ \vdots \\ H_r F^{h-1} \end{bmatrix}$$ (36)
Then, the lift of system $G_{a1}$ is given by

$$\bar{G}_{a1} = \begin{cases} \bar{x}_{l+1} = \bar{F} \bar{x}_l + \bar{G} \bar{u}_l \\
\bar{y}_l = P \begin{bmatrix} \bar{\Gamma}_m & 0 \\
0 & \bar{\Gamma}_r \end{bmatrix} \begin{bmatrix} \bar{H}_m \\
\bar{H}_r \end{bmatrix} \bar{x}_l + \begin{bmatrix} \bar{\Gamma}_m & 0 \\
0 & \bar{\Gamma}_r \end{bmatrix} \begin{bmatrix} \bar{D}_m \\
\bar{D}_r \end{bmatrix} \bar{\Omega} \bar{u}_l \end{cases}$$

where $\bar{F}$ and $\bar{G}$ are defined as in Eq. (13), and $\bar{\Gamma}_m$ and $\bar{\Gamma}_r$ are defined as in Eq. (6). Defining the matrices

$$\bar{B}_l = \begin{bmatrix} 0 & \ldots & 0 & 1 \end{bmatrix} \Pi_{\Gamma_m} \quad \bar{C}_l = \Pi_{\bar{\Gamma}_m} \begin{bmatrix} -1 \\
0 \\
\vdots \\
0 \end{bmatrix} \quad \bar{D}_l = \Pi_{\bar{\Gamma}_m} \begin{bmatrix} 1 & 0 & 0 & \ldots & 0 \\
-1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \end{bmatrix} \Pi_{\Gamma_m}$$

(37)

where $\Pi_{\Gamma_m}$, $\Pi_{\bar{\Gamma}_m}$ are the projection matrices defined at the end of Subsection (2.2.2), we can show that the lift of system $G_{a2}$ is described by

$$\bar{G}_{a2} = \begin{cases} \bar{x}^P_{l+1} = \left[ \bar{B}_l \ 0 \right] \begin{bmatrix} \bar{\Gamma}_m & 0 \\
0 & \bar{\Gamma}_r \end{bmatrix} \begin{bmatrix} \bar{H}_m \\
\bar{H}_r \end{bmatrix} \bar{x}^P_l + P \begin{bmatrix} \bar{\Gamma}_m & 0 \\
0 & \bar{\Gamma}_r \end{bmatrix} \begin{bmatrix} \bar{D}_m \\
\bar{D}_r \end{bmatrix} \bar{\Omega} \bar{u}^P_l \\
\bar{y}^P_{l+1} = P \begin{bmatrix} \bar{\Gamma}_m \bar{C}_l \\
0 \end{bmatrix} \bar{x}^P_l + P \begin{bmatrix} \bar{\Gamma}_m \bar{D}_l \bar{\Gamma}_m \\
0 \bar{\Gamma}_r \end{bmatrix} \begin{bmatrix} \bar{D}_m \\
\bar{D}_r \end{bmatrix} \bar{\Omega} \bar{u}^P_l \end{cases}$$

Computing the series of $\bar{G}_{a1}$ and $\bar{G}_{a2}$ yields

$$\bar{G}_a = \begin{cases} \bar{x}_{l+1} = \bar{M} \bar{x}_l + \bar{N} \bar{u}_l \\
\bar{y}_l = \bar{K} \bar{x}_l + \bar{L} \bar{u}_l \end{cases}$$

where

$$\bar{M} = \begin{bmatrix} \bar{F} \\
\bar{B}_l \bar{\Gamma}_m \bar{H}_m \end{bmatrix}, \quad \bar{N} = \begin{bmatrix} \bar{G} \\
\bar{B}_l \bar{\Gamma}_m \bar{D}_m \end{bmatrix} \bar{\Omega}, \quad \bar{K} = P \begin{bmatrix} \Pi_{\bar{\Gamma}_m} & 0 \\
0 & \Pi_{\bar{\Gamma}_r} \end{bmatrix} \begin{bmatrix} \Pi_{\Gamma_m} \bar{D}_l \bar{\Gamma}_m \bar{H}_m & \Pi_{\Gamma_m} \bar{C}_l \\
\Pi_{\Gamma_m} \bar{H}_r & 0 \end{bmatrix}$$

and

$$\bar{L} = P \begin{bmatrix} \Pi_{\bar{\Gamma}_m} & 0 \\
0 & \Pi_{\bar{\Gamma}_r} \end{bmatrix} \begin{bmatrix} \Pi_{\Gamma_m} \bar{D}_l \bar{\Gamma}_m & 0 \\
0 & \Pi_{\Gamma_r} \end{bmatrix} \begin{bmatrix} \bar{D}_m \\
\bar{D}_r \end{bmatrix} \bar{\Omega}$$

To establish detectability of the pair $(\bar{M}, \bar{K})$ and stabilizability of the pair $(\bar{M}, \bar{N})$, we start by determining the unstable eigenvalues $\lambda = \{ \lambda : \lambda$ is eigenvalue of $\bar{M}$ and $||\lambda|| \geq 1 \}$ and corresponding left and right eigenvector $P = \{ p : \bar{M}p = \lambda p, \lambda \in \Lambda \}$ and $Q = \{ q : q^T \bar{M} = \lambda q^T, \lambda \in \Lambda \}$, respectively. From the structure of $\bar{M}$, $\Lambda$ coincides with the unstable eigenvalues of $\bar{F}$ and $P$ and $Q$ can be written as, $P = \{ p : p = [w^T \ ((\bar{B}_l \bar{\Gamma}_m \bar{H}_m)^T \bar{v})^T]^T \}, \quad \bar{F}v = \lambda v, \quad \lambda \in \Lambda \}$ and $Q = \{ q : q^T = [w^T 0], \quad w^T \bar{F} = \lambda w^T, \quad \lambda \in \Lambda \}$, respectively. As stated in Ref. [5], assumption iii) implies that $v$ is an eigenvector of $\bar{F}$ associated with an unstable eigenvalue $\mu$ if and only if it is an eigenvector of $\bar{F}$ associated with $\lambda = \mu^h$, i.e.,

$$Fv = \mu v \iff \bar{F}v = \mu^h v \quad \text{and} \quad w^T \bar{F} = \mu w^T \iff w^T \bar{F} = \mu^h w^T.$$
Taking into account the structure of $F$ defined in Eq. (35), we can partition the unstable eigenvalues of $M$ into $\Lambda = \Lambda_A \cup \Lambda_I$, where $\Lambda_I$ are $m$ unitary eigenvalues and

$$\Lambda_A = \{ \lambda : \lambda = \mu^h, \mu \text{ is an eigenvalue of } A_d \text{ and } \|\mu\| \geq 1 \}$$

and partition accordingly the associated eigenvectors, $P = P_A \cup P_I$ and $Q = Q_A \cup Q_I$, where

$$P_A = \{ p : p = [v^T \ ((B_l \Gamma_m \tilde{H}_m \mu^h) v)^T]_r, \ v = [v_a^T 0]^T, \ A_d v_a = \mu v_a \ \mu^h \in \Lambda \}$$

$$P_I = \{ p : p = [v^T \ ((B_l \Gamma_m \tilde{H}_m \mu^h) v)^T]_r, \ v = [v_a^T v_b^T]^T, \ [A_d - I \ B_d] [v_a^T v_b^T]^T = 0 \}$$

$$Q_A = \{ q : q^T = [w^T 0], w^T = [w_a^T w^T a_{\mu^h - 1}] \ w_a^T A_d = \mu w_a^T \ \mu^h \in \Lambda \}$$

$$Q_I = \{ q : q^T = [w^T 0]^T, w^T = [0 w_b^T], \ w_b \in \mathbb{R}^m \setminus \{0\} \}.$$

Notice that $Q_A$ is well-defined since by assumption iii) $\mu \neq 1$. We are then in conditions to apply the standard PHB test to prove stabilizability and detectability of $G_a$, i.e. $q^T M = \lambda q^T \implies q^T N \neq 0$, and $MP = \lambda p \implies Kp \neq 0$, respectively.

**Stabilizability**

For $q^T = [w^T 0] = [w_a^T w^T a_{\mu^h - 1}] 0 \in Q_A$, $w_a^T A_d = \mu w_a^T$ we have

$$q^T N = w^T G \Omega = (1 + \frac{1}{\mu - 1}) \left\{ \mu^{h-1} w_a^T B_d \Omega_0 \ \mu^{h-2} w_a^T B_d \Omega_1 \ \ldots \ w_a^T B_d \Omega_{h-1} \right\} \neq 0$$

where we used assumption i) $(w_a^T B_d \neq 0)$ and assumption ii).

For $q^T = [w^T 0] = [0 w_b^T] 0 \in Q_I$, $q^T \tilde{N} = w^T \tilde{G} \tilde{\Omega} = [w_b^T \Omega_0 \ \ldots \ w_b^T \Omega_{h-1}] \neq 0$

by assumption ii).

**Detectability**

For $p = [v^T ((B_l \Gamma_m \tilde{H}_m \mu^h) v)^T]_r \in P_A$, $v = [v_a^T 0]^T \ A_d v_a = \mu v_a$ we have

$$Kp = P \left[ \Pi_{\Gamma_m}^{T} 0 \ \Pi_{\Gamma_m}^{T} \right] \left[ \Pi_{\Gamma_m} \bar{D}_l \Gamma_m \tilde{H}_m \Pi_{\Gamma_m} \bar{C}_l \ 0 \right] \left[ \begin{array}{c} v \\ (B_l \Gamma_m \tilde{H}_m \mu^h) v \end{array} \right]$$

and thus it suffices to prove that

$$\left[ \Pi_{\Gamma_m} \bar{D}_l \Gamma_m \tilde{H}_m \Pi_{\Gamma_m} \bar{C}_l \ 0 \right] \left[ \begin{array}{c} v \\ (B_l \Gamma_m \tilde{H}_m \mu^h) v \end{array} \right] \neq 0. \quad (38)$$

From the definitions of $\tilde{H}_m$, $\bar{B}_l$, $\bar{C}_l$ and $\bar{D}_l$ and from assumption ii) it is easy to see that $\bar{B}_l \Gamma_m \tilde{H}_m v = \mu^i \left[ C_{dm} 0 \right] v$ for some $i \in \{0, \ldots, h - 1\}$, and that

$$\left[ \Pi_{\Gamma_m} \bar{D}_l \Gamma_m \tilde{H}_m \Pi_{\Gamma_m} \bar{C}_l \ 0 \right] = \left[ \begin{array}{cccc} 1 & 0 & 0 & \ldots & 0 \\ -1 & 1 & 0 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & -1 & 1 & 0 \\ \Pi_{\Gamma_m} \bar{H}_m \end{array} \right] \left[ \begin{array}{c} \Pi_{\Gamma_m} \tilde{H}_m \end{array} \right]^{-1} \left[ \begin{array}{c} 0 \\ \Pi_{\Gamma_m} \bar{H}_m \end{array} \right] \neq 0. \quad (39)$$

One can also verify that

$$[1 \ 0 \ \ldots \ 0] \Pi_{\Gamma_m} \tilde{H}_m v = [C_{dm} 0] \mu^j v \text{ for some } j \in \{0, \ldots, h - 1\}$$
and
\[
\begin{bmatrix}
1 & 0 & \ldots & 0
\end{bmatrix} \Pi_{\Gamma_r} \dot{H}_r v = [C_{dr} 0] \mu^k v \text{ for some } k \in \{0, ..., h-1\}
\]
from which two of the lines of the left-hand side of Eq. (38) are given by
\[
\begin{bmatrix}
(C_{dm}\mu^j - C_{dm,\mu}^{\mu^{-1}-1}) & 0 \\
C_{dr}\mu^k & 0
\end{bmatrix} v = \begin{bmatrix}
(\mu^j - \mu^{\mu^{-1}-1}) & 0 \\
0 & \mu^k
\end{bmatrix} C_{dv_a}.
\]
This establishes Eq. (38), since by assumption iii) \( \mu \neq 1 \) and by assumption i) \( C_{dv_a} \neq 0 \).

For \( p = [v^T ((B_{\dot{\Gamma}_m} H_{\dot{\Gamma}_m}) v)^T] \in P_1 \), \([A_d - I \ B_d] v = 0\), it can be verified that the first rows of Eq. (38) are zero \( \Pi_{\Gamma_r} D_{\dot{\Gamma}_m} H_{\dot{\Gamma}_m} \Pi_{\Gamma_r} C_{\dot{\Gamma}_m} (\dot{B}_{\dot{\Gamma}_m} H_{\dot{\Gamma}_m}) v = 0 \). However, the last rows are different from zero \( \Pi_{\Gamma_r} \dot{H}_r v \neq 0 \), since otherwise the condition \( \Pi_{\Gamma_r} \dot{H}_r v = 0 \) would imply \( [C_{dr} 0] v = 0 \) and we would have \( [A_d - I \ B_d] 0 = 0 \) which contradicts assumption iv) of the theorem.

**Proof**

(of Lemma 3) Suppose the expression for the controller \( C_K \) that asymptotically stabilizes \( G_a \), Eq. (17), is given by
\[
C_K = \begin{bmatrix}
x_{k+1}^K \\
y^C_k
\end{bmatrix} = \begin{bmatrix}
A^K_k & B^K_k \\
C^K_k & D^K_k
\end{bmatrix} \begin{bmatrix}
x_k^a \\
y^a_k
\end{bmatrix}
\]
It is straightforward to check that the equilibrium values for the feedback connection of \( C_K \) and \( G_a \) are
\[
\begin{align*}
\bar{x}^K &= 0 , & \bar{y}^C &= 0 , & \bar{y}^A &= 0 , \\
\bar{x} &= x_0 , & \bar{x}^l &= u_0 , & \bar{x}^D &= y_0 ,
\end{align*}
\]
and that these values yield the steady-state value \( y_0 = C_r x_0 = r_0 \) for \( y_r \). Due to linearity and asymptotic stability the system trajectories will tend to this unique equilibrium point even in the presence of disturbances that do not affect asymptotic stability.

**REFERENCES**