Brief paper

Split-path nonlinear integral control for transient performance improvement

S.J.L.M. van Loon, B.G.B. Hunnekens, W.P.M.H. Heemels, N. van de Wouw 1, H. Nijmeijer

Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, NL 5600 MB Eindhoven, The Netherlands

ARTICLE INFO

Article history:
Received 9 October 2014
Received in revised form 16 July 2015
Accepted 22 December 2015

Keywords:
Transient performance
Split-path nonlinear control
Stability
Hybrid control
Motion control

ABSTRACT

In this paper, we introduce the split-path nonlinear integrator (SPANI) as a novel nonlinear filter designed to improve the transient performance of linear systems in terms of overshoot, while preserving good rise-time and settling behavior. In particular, this nonlinear controller targets the well-known trade-off induced by integral action, which removes steady-state errors due to constant external disturbances, but deteriorates transient performance in terms of increased overshoot. The rationale behind the proposed SPANI filter is to ensure that the integral action has, at all times, the same sign as the closed-loop error signal, which, as we will show, enables a reduction in overshoot thereby leading to an overall improved transient performance. The resulting closed-loop dynamics is modeled by a hybrid dynamical system, for which we provide sufficient Lyapunov-based conditions for stability. Furthermore, we illustrate the effectiveness, the design and the tuning of the proposed controller in a benchmark simulation study of an industrial pick-and-place machine.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In classical linear control theory, it is well-known that Bode’s gain–phase relationship causes a hard limitation on achievable performance trade-offs in linear time-invariant (LTI) feedback control systems, see, e.g., Freudenberg, Middleton, and Stefanoulou (2000) and Seron, Braslavsky, and Goodwin (1997). The related interdependence between gain and phase is often in conflict with the desired performance specification set by the control engineer. For example, it is impossible to add integral action to a feedback control system, typically included to achieve zero steady-state errors, without introducing the negative effect of phase lag. It was the fundamental gain–phase relationship for LTI systems that motivated W.C. Foster and co-workers in 1966 to develop the split-path nonlinear (SPAN) filter, in which they intended to design the gain and phase characteristics separately (Foster, Gieseking, & Waymeyer, 1966). Another fundamental limitation is given by the fact that for a stable closed-loop system, the error step response necessarily overshoots if the open-loop transfer function of the linear plant with LTI controller contains a double integrator, see, e.g., Seron et al. (1997, Theorem 1.3.2). The latter fundamental limitation applies to the majority of motion systems (of which the industrial benchmark study in this paper is an example).

In Aangenent, van de Molengraft, and Steinbuch (2005), Fong and Szeto (1980), Foster et al. (1966) and Zoss, Witte, and Marsch (1968), the SPAN filter was designed as a phase lead filter that does not cause magnitude amplification. It was shown that a controller with such a nonlinear SPAN filter can outperform its linear counterpart with respect to overshoot to a step response. In this paper, we also aim to achieve the same objective, namely, enhancing transient performance of linear (motion) systems in terms of overshoot, but we will propose a variant/extension to the SPAN filter, which we will call the split-path nonlinear integrator (SPANI). In contrast to the SPAN filter as in Aangenent et al. (2005), Fong and Szeto (1980), Foster et al. (1966) and Zoss et al. (1968), the SPANI is a nonlinear integrator that enforces the integral action to take the same sign as the closed-loop error signal, thereby limiting
the amount of overshoot and, as a result, improving the transient performance while still guaranteeing a zero steady-state error in the presence of a constant reference and disturbance signal.

Several other hybrid/nonlinear control strategies for improving the transient performance for linear systems have been proposed in the literature, see Hunnekens (2014) for a recent overview. In this respect, we would like to mention reset control because it exhibits interesting analogies with the SPANI controller proposed in this paper. Firstly, reset control has also been introduced quite some time ago in 1958 (Clegg, 1958), but especially in the last two decades, it has regained attention in both theoretically oriented research, see e.g., Aangenent, Witvoet, Heemels, Van De Molengraft, and Steinbuch (2010), Baños and Barreiro (2012), Beker, Hollot, Chait, and Han (2004), Nesić, Teel, and Zaccarian (2011) and Prieur, Tarbouriech, and Zaccarian (2013), as well as in applications (Baños & Barreiro, 2012; Panni, Waschl, Alberer, & Zaccarian, 2014; Zheng, Chait, Hollot, Steinbuch, & Norg, 2000).

Secondly, both strategies have the common feature of using a switching surface (or region) to trigger a change in the control signal, which leads to the injection of discontinuous control signals into an otherwise smooth (and linear) feedback system. Distinctively, reset control employs the same (linear) control law on both sides of the switching surface and a state reset takes place on the switching surface, whereas we will show that due to the construction of the SPANI filter, the dynamics changes after a switch and no state reset takes place. Another important difference is that a reset controller is not capable of achieving a zero-steady state error in the presence of constant reference and disturbance signals, see, e.g., Baños and Barreiro (2012), while the SPANI comes with such guarantees. We will furthermore demonstrate that the proposed (output feedback) controller structure supports the design of all the linear components of the SPANI controlled system using well-known (frequency-domain) loop-shaping techniques. Consequently, the specifically chosen control structure enhances the applicability to industrial control practice since it allows the control engineer to loop-shape the (linear part of the) controller such that it has favorable disturbance attenuation properties, while the SPANI serves as a hybrid add-on element that improves the transient performance.

It is well-known that many nonlinear control strategies have in common that closed-loop stability cannot be verified anymore using “linear” tools such as the Nyquist stability theorem (except in specific cases, see Hunnekens, 2014). Hence, the importance of the development of other testable stability conditions is evident. Despite this fact, none of the works that considered SPANI filters, e.g., Aangenent et al. (2005), Fong and Szeto (1980), Foster et al. (1966) and Zoss et al. (1968), provided such results thus far. In this paper, we propose, therefore, the first testable Lyapunov-based stability conditions for a feedback control system including the newly proposed SPANI controller. This paper extends the preliminary results presented in van Loon, Hunnekens, Heemels, van de Wouw, and Nijmeijer (2014), in particular by presenting the full stability proof and by considering a model-based benchmark study on an industrial pick-and-place machine.

The paper is organized as follows. In Section 2, we introduce and motivate the proposed SPANI filter. Subsequently, in Section 3, we model the resulting closed-loop system as a hybrid system, for which in Section 4 stability conditions are provided. In Section 5, we illustrate the potential of the proposed nonlinear control strategy using a model-based benchmark example of an industrial pick-and-place machine. Finally, we end with conclusions in Section 6.

1.1. Nomenclature

The following notational conventions will be used. Let \mathbb{R} denote the set of real numbers and \mathbb{R}^n the n-fold Cartesian product $\mathbb{R} \times \cdots \times \mathbb{R}$ with the standard Euclidean norm denoted by $\| \cdot \|$. We use \wedge, \vee to denote the logical ‘and’, ‘or’ operator, respectively. For a matrix $S \in \mathbb{R}^{n \times m}$, we denote by $\text{im} S := \{ Sv \mid v \in \mathbb{R}^m \}$ the image of S, and by $\ker S := \{ x \in \mathbb{R}^n \mid Sx = 0 \}$ its kernel. For two subspaces V, W of \mathbb{R}^n, we use $V + W = \{ v + w \mid v \in V, w \in W \}$ to denote the direct sum, and write $W \oplus V = \mathbb{R}^n$ when $V = W = \mathbb{R}^n$ and $V \cap W = \{0\}$. We call a matrix $P \in \mathbb{R}^{n \times n}$ positive definite and write $P > 0$, if P is symmetric (i.e., $P = P^T$) and $x^T P x > 0$ for all $x \neq 0$. Similarly, we call $P \prec 0$ negative definite when $-P$ is positive definite. For brevity, we write symmetric matrices of the form $\begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$ as $[A, B]$. An $n \times n$ identity matrix is denoted by $I_{n \times n}$, and $O_{k \times l}$ denotes a $k \times l$ matrix with all zero entries. The distance of a vector $x \in \mathbb{R}^n$ to a set $\mathcal{A} \subseteq \mathbb{R}^n$ is defined by $\| x \|_{\mathcal{A}} := \inf_{y \in \mathcal{A}} \| x - y \|$.
2.2. Description of the control system

The overall feedback configuration used in this paper is shown in Fig. 2. In this figure, \(e := r - y_p \) is the tracking error between the reference signal \(r \) and the output \(y_p \) of the plant with transfer function \(\mathcal{P}(s) \), \(s \in \mathbb{C} \). Moreover, \(d \) denotes an unknown, bounded input disturbance and \(u := u_1 + u_2 \), the total control input, which consists of the control input \(u_1 \) produced by the linear controller with transfer function \(C_{nom}(s) \) and the control input \(u_2 \) of the SPANI. The linear part of the closed-loop system consists of a single-input-single-output (SISO) LTI plant

\[
\mathcal{P} : \begin{align*}
\dot{x}_p & = A_p x_p + B_p u + B_p d \\
C_{nom} & = C_p x_p
\end{align*}
\]

with state \(x_p \in \mathbb{R}^{n_p} \), and a SISO LTI nominal controller

\[
C_{nom} : \begin{align*}
\dot{x}_c & = A_c x_c + B_c e \\
u_c & = C_c x_c + D_c e
\end{align*}
\]

with state \(x_c \in \mathbb{R}^n \). The state (and output) of the integrator \(C_{i}(s) = \omega_i/s \), with \(\omega_i \in \mathbb{R}_{>0} \), is defined by \(x_i \in \mathbb{R} \). The sign-function in the lower branch of the SPANI, see Fig. 2, is formally defined as

\[
\text{sign}(e, x_i) = \begin{cases}
1 & \text{if } e > 0, \\
1 & \text{if } e = 0 \text{ and } x_i \geq 0, \\
-1 & \text{if } e = 0 \text{ and } x_i < 0, \\
-1 & \text{if } e < 0,
\end{cases}
\]

which shows that when \(e = 0 \), we have \(u_i = +x_i \) (the dependence of the sign-function on \(x_i \) is denoted by the dashed arrow in Fig. 2). The SPANI controller as in Fig. 2 can be modelled as a switched system with dynamics

\[
\text{SPANI} : \begin{align*}
\dot{x}_i & = \omega_i e \\
u_i & = \begin{cases}
x_i & \text{if } x_i(\epsilon x_i + e) \geq 0 \\
-x_i & \text{if } x_i(\epsilon x_i + e) < 0,
\end{cases}
\end{align*}
\]

in which \(x_i \in \mathbb{R} \) denotes the state of the integrator in the SPANI controller and \(\epsilon \in \mathbb{R}_{>0} \). For \(\epsilon = 0 \), we recover the situation as considered in Section 2.1, i.e., a filter that enforces the integral action to take the exact same sign as the error signal. For such a case, the situation where the ‘default’ integrator is active (\(u_i = +x_i \)) corresponds to \(e x_i \geq 0 \) and the situation where the integrator has negative sign (\(u_i = -x_i \)) corresponds to \(e x_i < 0 \), see Fig. 3(a) for a representation in the \((e, x_i)\)-plane. The SPANI as in (4) therefore represents a more general class of SPANI controllers, in which the (typically small) parameter \(\epsilon \) is associated with tilting of one of the switching boundaries, see Fig. 3(b), and is included to create a SPANI controller with favorable robustness properties compared to the SPANI with \(\epsilon = 0 \) (which is closer to the classical SPANI filter). The latter claim can be intuitively explained as follows. Consider Fig. 3 and focus first on the SPANI with \(\epsilon = 0 \), i.e., Fig. 3(a). Note that the desired equilibrium point, with \(x_i \) having the equilibrium value \(x_i^* \) and \(e \) having the equilibrium value \(e^* = 0 \), i.e., \((e, x_i) = (e^*, x_i^*)\), is located exactly on the switching plane, see Fig. 3(a). Note in this respect that since \(e^* = 0 \) is enforced by the integral action, it typically requires integral action \((x_i^* \neq 0)\) to achieve such zero steady-state error, e.g., if constant disturbances are present. Given the fact that the desired equilibrium is on a switching boundary, small perturbations around this equilibrium may cause the dynamics to switch, resulting in an instantaneous change of sign of \(u_i \). This might result in a large number of consecutive switches, which is highly undesired in many applications. By introducing the tilt parameter \(\epsilon \), we ensure that the equilibrium is located strictly inside the set where \(x_i(\epsilon x_i + e) > 0 \), see Fig. 3(b). As a consequence, we ensure that, locally around the equilibrium, no switching occurs. In Section 4, we present conditions that can help in making an appropriate choice for \(\epsilon \).

Although the tilting parameter \(\epsilon \) creates robustness locally around the equilibrium, we cannot provide such guarantees around the switching plane in the remaining part of the state-space. In fact, we will demonstrate in Section 5.2 that in certain situations multiple consecutive switchings can occur. In order to prevent such undesired behavior from happening, a minimal dwell-time argument, see, e.g., Hespanha and Morse (1999) and Solo (1994), is adopted in the switching function of the SPANI as in (4). This will be made more specific and precise in the next section.

3. Hybrid system modeling

In this section, we model the closed-loop system as discussed in Section 2.2., see Fig. 2, in the hybrid system formalism of Goebel, Sanfelice, and Teel (2012), resulting in the description

\[
\begin{align*}
\dot{x} & = f(x, w), & \text{if } x \in \mathcal{F}, \\
\dot{x}^+ & = g(x), & \text{if } x \notin \mathcal{F}, \tag{5a}
\end{align*}
\]

where \(x \in \mathbb{R}^n \) is the state, \(w \in \mathbb{R}^m \) an exogenous input, \(\mathcal{F} \subseteq \mathbb{R}^n \) and \(\mathcal{G} \subseteq \mathbb{R}^m \) are the flow set and jump set, respectively, \(f : \mathcal{F} \to \mathbb{R}^n \) and \(g : \mathcal{G} \to \mathbb{R}^m \) are the flow and jump map, respectively, and \(x^+ \) denotes the value of the state directly after the reset. For the analysis results in this paper, the signals \(w \) are typically constant such that the standard notions related to the hybrid framework of Goebel et al. (2012), such as the concept of hybrid time domains and solutions of (5), are applicable. These are reported in the Appendix for convenience of the reader. For more details on this hybrid modeling framework we refer to Goebel et al. (2012).

To obtain a complete closed-loop model of the feedback configuration in Fig. 2, we use the interconnections \(e = r - y_p \) and
u = u_r + u_n combine (1), (2) and (4), and define the state-vector
x := \begin{bmatrix} x_r & x_n \end{bmatrix}^T \in \mathbb{R}^n, with n = n_r + n_n + 1. Moreover, we
introduce a timer variable \(\tau \in \mathbb{R}_{>0} \) and Boolean \(\ell \in \{0, 1\} \), and define the augmented state vector \(\chi := [x^T \ \tau \ \ell] \in \mathbb{R}^p \), with \(p := n + \ell + 1 \). Then, the
flow map \(f \) in (5a) is given by
\[
f(\chi, w) = \begin{bmatrix} (\tilde{A}_x + \tilde{B}_r + \tilde{B}_d d)^T, 1, 0 \end{bmatrix}^T, \quad \text{when } \ell = 0
\]
\[
\begin{bmatrix} (\tilde{A}_x + \tilde{B}_r + \tilde{B}_d d)^T, 1, 0 \end{bmatrix}^T, \quad \text{when } \ell = 1
\]
with
\[
\begin{align*}
\tilde{A}_1 & := \begin{bmatrix} A_p - B_p D_c p & B_p C_c + B_p p & -B_p C_p \\ -B_p C_p & A_c & 0 \end{bmatrix}, & \tilde{B}_1 & := \begin{bmatrix} B_p D_c \\ -B_p C_p \end{bmatrix}, \\
\tilde{A}_2 & := \begin{bmatrix} A_p - B_p D_c p & B_p C_c - B_p p & -B_p C_p \\ -B_p C_p & A_c & 0 \end{bmatrix}, & \tilde{B}_2 & := \begin{bmatrix} B_p D_c \\ -B_p C_p \end{bmatrix}.
\end{align*}
\]
We assume that, by proper design, the linear controller \(c_{\text{nom}}(x) \) is fixed and \(\tilde{A}_1 \) in general not be Hurwitz. In (5), flow according to \(\dot{\chi} = f(\chi, w) \), occurs when the state \(\chi \) is in the flow set given by
\[
\mathcal{F} := \{ \chi \in \Theta | (\ell = 0 \land (x_\ell(e_x) + e) \geq 0 \land 0 \leq \tau \leq \tau_0) \lor (\ell = 1 \land x_\ell(e_x) + e = 0) \},
\]
in which \(\tau_0 \in \mathbb{R}_{>0} \). Note that the state-dependent switching rule of the SPANI controller, see (4), is augmented with a minimal dwell-time argument, see, e.g., Hespanha and Morse (1999) and Solo (1994). To be precise, we only include this time restriction in the first mode (when \(\ell = 0 \)) in which the stable \(A_1 \)-dynamics is active and force the system to stay in this mode for at least \(\tau_0 \in \mathbb{R}_{>0} \) time units. In the second mode (when \(\ell = 1 \)), in which the unstable \(A_2 \)-dynamics is active, no time restrictions are imposed.

The jump map \(g \) in (5b) is given by
\[
g(\chi) := [x^T, 0, 1 - \ell]^T,
\]
and the jump set is given by
\[
\mathcal{J} := \{ \chi \in \Theta | (\ell = 0 \land (x_\ell(e_x) + e) \leq 0 \land \tau \geq \tau_0) \lor (\ell = 1 \land x_\ell(e_x) + e) \geq 0 \}.
\]
Note that \(\tau_0 > 0 \) guarantees that there can be at most two consecutive jumps at one continuous time \(t \in \mathbb{R}_{>0} \). In particular, for any solution \(\phi \) to the hybrid system \(\mathcal{F}, f, \mathcal{J}, g \) and for any \((t, j) \in \text{dom } \phi \), it holds that \((t', j+2) \in \text{dom } \phi \) implies \(t' \geq t + \tau_0 \).

4. Stability analysis

In this section, we consider constant (step) references \(r(t) = r_c, t \in \mathbb{R}_{>0} \), and constant disturbances \(d(t) = d_d, t \in \mathbb{R}_{>0} \), and present LMI-based stability conditions for the hybrid system as in (5), (6). In order to do so, let us define the equilibrium set \(\mathcal{A} \) of the hybrid system (5), (6), for which we would like to prove global exponential stability (GES), as follows
\[
\mathcal{A} := \{ \chi \in \mathcal{F} \times \mathcal{J} \mid x = x^* \},
\]
in which \(x^* \) denotes the equilibrium point satisfying
\[
A_1 x^* + \tilde{B}_r r_c + \tilde{B}_d d_d = 0.
\]
Note that, \(x^* \) (and thus \(\mathcal{A} \)) depends on the choice of \(r_c \) and \(d_d \). Moreover, from (4) it follows that \(e^* = 0 \) in the equilibrium \(x^* \), such that the equilibrium indeed conforms to the \(A_1 \)-dynamics for \(\epsilon > 0 \), and therefore satisfies (8). Note furthermore that since the system matrix \(A_1 \) is Hurwitz, and thus invertible, (8) has one unique solution \(x^* \) for fixed \(r_c \in \mathbb{R} \) and \(d_d \in \mathbb{R} \).

Theorem 3 below poses sufficient conditions under which GES of the set \(\mathcal{A} \) can be guaranteed for the hybrid system (5), (6). Consequently, under these conditions the exact tracking of the constant reference value \(r_c \), and disturbance rejection of the constant disturbance value \(d_d \), are guaranteed. Here, let us define what is meant by GES of the set \(\mathcal{A} \) in this paper, and introduce some notational conventions used in Theorem 3.

Definition 1. The set \(\mathcal{A} \) is said to be GES for the system (5), (6) with \(r(t) = r_c \) and \(d(t) = d_d, t \in \mathbb{R}_{>0} \), if there exist a \(\rho \in \mathbb{R}_{>0} \) and \(\mu \in \mathbb{R}_{>0} \), such that for all \(x(0, 0) \in \mathcal{F} \cup \mathcal{J} \), it holds that the corresponding solutions \(\chi(t, j) \) to (5), (6) satisfy \(\| \chi(t, j) \|_{\mathcal{A}} \leq \rho e^{-\mu t} \| x(0, 0) \|_{\mathcal{A}} \) for all \((t, j) \in \text{dom } \chi \).

Remark 2. Note that due to the dwell time condition with \(\tau_0 > 0 \), Definition 1 is in fact equivalent to the definition of GES of \(\mathcal{A} \) in Teel, Forni, and Zaccarian (2013). This can be seen by using that for a solution \(\phi \) to (5), (6) it holds that \(j \leq 2 \tau_0^{-1} + 2 \) for any \((t, j) \in \text{dom } \phi \).

Finally, let the matrix \(M \in \mathbb{R}^{(n+2)\times(n+1)} \) be defined by
\[
M := \begin{bmatrix}
-I & 0 & O_{n \times 1} \\
0 & O_{2 \times n} & \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}
\end{bmatrix}.
\]

Theorem 3. Consider the hybrid system given by (5), (6), in which \(\epsilon > 0 \) is fixed and \(\tau_0 > 0 \), and the set \(\mathcal{A} \) given by (7). If there exist a positive definite matrix \(P \in \mathbb{R}^{n \times n} \) and a constant \(\alpha \in \mathbb{R}_{>0} \) satisfying
\[
\tilde{A}_1^T P + \tilde{P} \tilde{A}_1 < 0
\]
then the set \(\mathcal{A} \), with \(r(t) = r_c \), and \(d(t) = d_d, t \in \mathbb{R}_{>0} \), is GES for the hybrid system (5), (6).
for some $c_2 \geq c_1 > 0$, since $P = P^\top > 0$. Second, we are going to show that during flow, we have that, along the solutions of (5), (6),

$$
\langle \nabla W(\chi), f(\chi) \rangle \leq -c_1\|\tilde{x}\|^2
$$

(17)

for all $\chi \in S$, (18)

for some $c_3 > 0$, $c_4 = \frac{c_3}{2} > 0$. To show this, we consider two cases. The first case is given by

$$
\chi \in \Theta \quad \text{with } \ell = 0 \land \{x_0(\epsilon x_0 + e) \geq 0 \lor 0 \leq \tau \leq \tau_0\},
$$

where

$$
\hat{x} = \tilde{A}_1\tilde{x}.
$$

Hence, we obtain that along solutions

$$
\dot{V} = \tilde{x}^\top (\tilde{A}_1^\top P + P\tilde{A}_1)\tilde{x} - c_5\|\tilde{x}\|^2,
$$

for some $c_5 > 0$, due to (15).

The second case is given by

$$
\chi \in \Theta \quad \text{with } \ell = 1 \land x_0(\epsilon x_0 + e) < 0,
$$

in which

$$
\hat{x} = \tilde{A}_2\tilde{x} - \tilde{A}_0x^*.
$$

Remark 4. Theorem 3 guarantees that solutions of the closed-loop system converge exponentially (as a function of continuous time t) to the set on which $e = 0$ for all $\tau_0 > 0$ and $t(\tau) = \tau$, $d(\tau) = d_\tau$, $\tau \in [\tau_0, \infty)$. In addition, for $\tau_0 = 0$ the closed-loop dynamics can be represented by a continuous-time switched linear system given by

$$
\dot{x} = \begin{cases}
\tilde{A}_1x + \tilde{B}_1r + \tilde{B}_d & \text{if } x_0(\epsilon x_0 + e) \geq 0 \\
\tilde{A}_2x + \tilde{B}_1r + \tilde{B}_d & \text{if } x_0(\epsilon x_0 + e) < 0,
\end{cases}
$$

with output $y_p = C_p x_p$. In such switched systems, sliding modes can occur when the vector fields on both sides of the switching surface point towards each other, see, e.g., Filippov (1988). However, it can be shown that, based on a Lyapunov analysis of the convex combination between the dynamics on both sides of the switching plane, the occurrence of sliding modes (if they exist) does not change the GES of A under the hypothesis of Theorem 3. For details, see Hunnekens (2014).

5. Case study on a pick-and-place machine

In this section, we consider a simulation study based on an industrial pick-and-place machine used to place electrical components, such as resistors, capacitors, integrated circuits etc., with a high speed and high precision on a printed circuit board (PCB) (Assématélon, 2015). The working principle of a pick-and-place machine is as follows: The first step is to place the PCB within the working area of the placement head, in the second step the placement head picks up an electrical component, and in the third step the placement head is navigated to a pre-described position on the PCB where it should place the component. Finally, in the fourth step, the component is placed on the PCB as soon as all positioning tolerances are met. In this case study, we focus particularly on the third step with the goal to enable the fourth step to start as soon as possible. Namely, the placement of the electrical component on the PCB in the fourth step can only be finalized when the closed-loop error e, related to step three, has converged within a pre-described error bound. Therefore, our objective is to study if we can increase the machine throughput by achieving a faster convergence of the closed-loop error to its specified error bound by replacing the linear integrator $C_I(s)$ by a SPANI of the form (4) (with the same integrator gain ω_1).

5.1. Simulation model

A schematic representation of the simulation model is depicted in Fig. 4. In this figure, the plant $P(s)$ is identified based on measured frequency response data, resulting in a 4th-order model. The plant will be controlled by a proportional–integral–derivative
Fig. 4. Schematic representation of the simulation model.

Fig. 5. Error profile for the region of interest using a 4th-order reference trajectory with an end position of 200 mm. For the sake of clarity, a scaled acceleration profile is shown in green and a smaller figure is added showing the entire time span in which the region of interest is indicated by the dashed rectangle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Total control signal for the linear controller $C_{\text{nom}} + C_I$, and for $C_{\text{nom}} + \text{SPANI}$.

(PID)-type controller $C_{\text{nom}}(s) + C_I(s)$, in which $C_{\text{nom}}(s)$ consists of a PD-controller and a 2nd-order low-pass filter. Additionally, as in many industrial motion controllers, acceleration feedforward is used, with gain m that represents the estimated plant mass, to compensate for the low-frequency rigid-body plant dynamics. Cogging forces, which are position-dependent force disturbances caused by the magnetic interaction between the permanent magnets and the motor coils, are known to be the main disturbance source in this particular application. Based on identification experiments, we modeled this cogging disturbance force as a sinusoidal position-dependent force given by

$$F_c(y_p) = A_c \sin \left(\frac{\pi}{L_p} y_p + \phi_{F_c} \right),$$

in which A_c denotes the maximum cogging force, δ_p the pitch between the magnets and ϕ_{F_c} a phase shift tuned on the basis of measurement data.

Remark 5. Although there exist feedforward techniques that can compensate for such (repetitive) cogging force disturbances, for instance using iterative learning control, see e.g., Janssen, Pipeleers, and Swevers (2013) and van Berkel, Rotariu, and Steinbuch (2007), or look-up tables, these disturbances vary from machine to machine and often manufacturers do not have the resources to implement such techniques on each machine separately. Moreover, the vast majority of industrial applications will be subject to disturbances that cannot be easily identified, and thus perfectly compensated for by feedforward control. Hence, integral action in the controller is still necessary in order to achieve zero steady-state errors.

In the following sections, we compare the transient performance of a linear controller with a controller in which the linear integrator is replaced by a SPANI. In Section 5.2, we consider the situation in which no dwell-time is included, i.e., $\tau_D = 0$. We show that the transient performance will increase by using a SPANI, but also that $\tau_D = 0$ might yield some undesired behavior in certain situations. In Section 5.3, we demonstrate that this undesired behavior can be prevented by including dwell-time restrictions as already introduced in Section 3.

5.2. Transient performance comparison with $\tau_D = 0$

In this section, we take $\tau_D = 0$ and study the response for two 4th-order reference trajectories corresponding to two different positions on the PCB where the electrical component should be placed, i.e., the first reference trajectory has an end position of 200 mm and the second of 105 mm. Note that due to the position-dependent cogging forces, this results in two different disturbance situations that the SPANI controller will have to cope with.

Let us first consider the reference with an end position of 200 mm. Fig. 5 shows the error profiles using a linear controller (dash-dotted blue), and in solid black the error profile obtained if we replace the linear integrator C_I by a SPANI of the form (4) (with the same gain ω_l) and $\epsilon = 0.0115$. This value for ϵ is motivated by the conditions of Theorem 3 and Remark 4. In fact, by verifying these conditions we can guarantee that the equilibrium x^* of (32) is GES for all $\epsilon \geq 0.0115$. As indicated in Fig. 5, compared to the linear case, an improved, and asymptotically stable, response can be obtained using a SPANI. Note that with 'improved', we mean both a reduction in overshoot and a faster convergence to the error bound (depicted by the horizontal dotted lines). This is in correspondence with the two performance objectives previously defined in Section 5.1. Firstly, we observe a significant overshoot reduction of ~20% almost immediately after the pick-and-place robot reaches its end-position (~0.443 s in Fig. 5), while an even more significant overshoot reduction is achieved in the response around $t = 0.3$ s, see the smaller figure inside Fig. 5. Secondly, almost immediately after the pick-and-place robot reaches its end-position (~0.443 s in Fig. 5) the error signal of the system with SPANI has converged within the error bound, thereby again outperforming the linear controller. These performance improvements are achieved by only two switches (in the region of interest) of the SPANI filter, see Fig. 6 in which the total control signal $u = u_c + u_i$ is depicted.

Let us now consider the reference profile with an end position of 105 mm. The error profiles of the linear controller and the nominal controller with SPANI and $\epsilon = 0.0115$ are depicted in Fig. 7(a), which again indicates that the SPANI controller outperforms the linear controller with respect to overshoot (by ~43% in this case).
and convergence within the error bound. However, it also reveals the following undesired behavior:

- For \(t \in [0.43, 0.48] \): The error shows fast oscillatory behavior, resulting from a large number of switches;
- For \(t \in [0.48, 0.52] \): An unexpected ‘peak’ in the error signal occurs while we expect to converge smoothly towards \(e = 0 \).

Both these phenomena are undesired and can be explained by considering Fig. 7(b)–(c), in which we consider the \((e, x_1)\)-plot of Fig. 7(b), and the integral action \(x_1 \) and the output \(u \) of the SPANI versus time in Fig. 7(c). In these figures, the equilibrium point is depicted by point C, which, for this particular disturbance situation, requires positive integral action (\(\sim x_1^2 = 0.286 \)) to compensate for the cogging disturbance force at the setpoint. However, as indicated in Fig. 7(b)–(c), the integral action \(x_1 \) has the wrong sign (up to point B). Still, up to point A in Fig. 7(b)–(c), the SPANI output \(u \) delivers, by means of many switches in the control signal \(u_s \), on average enough integral action to approximately compensate for the cogging disturbance. However, after point A in the figure, \(|x_1| \) is too small such that the SPANI cannot compensate for the cogging disturbance anymore. This results in a build-up of error, causing the peak in the error signal as depicted in Fig. 7(a) and Fig. 7(b)–(c). Eventually, after point B in Fig. 7, the integral state \(x_1 \) becomes positive and converges to the equilibrium in point C.

5.3. Transient performance comparison with \(\tau_D > 0 \)

In this section, we show that adding a minimal dwell-time condition \(\tau_D > 0 \), as discussed in Section 3, can alleviate this undesired behavior. Including dwell-time logic in the switching condition of the SPANI filter requires the tuning of the new parameter \(\tau_D \), which according to Theorem 3 cannot cause instability of the set \(A \). Simulation results for such a SPANI filter with dwell-time restriction are depicted in Fig. 8 using \(\tau_D = 0.0063 \) s. The working principle of the new switching rule can be explained best by considering Fig. 8(b), in which the \((e, x_1)\)-plane is shown. In point D, the response of the SPANI-controlled system reaches the switching plane for the first time and switches from mode 1 (red) to mode 2 (green) following the \(A_2 \)-dynamics. We stay in this mode until we reach the switching plane again at point E, where we switch back to mode 1. Apparently, the vector field of the \(A_1 \)-dynamics directs towards the switching plane but at the moment of crossing (point F) the dwell-time condition \(\tau \geq \tau_D \) is not yet satisfied. Hence, no switch takes place and it takes until point G at which the dwell-time condition is satisfied. At that moment in time, we do not satisfy the condition \(x_1(e x_1 + e) \geq 0 \), resulting in a switch to mode 2.

Let us now compare this result to the previous situation, i.e., as depicted in Fig. 7. Concentrating first on Figs. 7(b) and 8(b), we observe that up to point F the error profiles are identical. As a result, the first peak in the error profiles (around \(\sim 0.42 \) s) of Figs. 7(a) and 8(a) is identical. However, for sufficiently large \(\tau_D \), this does not apply to the second peak (around \(\sim 0.43 \) s) in the error profile. This can be explained by considering point F; for the case \(\tau_D = 0 \) a switch to mode 2 takes place at point F causing an immediate change in the vector field. However, for the case with \(\tau_D = 0.0063 \), no switch takes place until point G, thereby causing the system to reside longer in mode 1, which, in turn, causes the error to overshoot more in this particular situation. Therefore, including such dwell-time logic into the switching condition might result in a (slight) decrease of potential transient performance benefits. Nevertheless, it is clear from Fig. 8 that the dwell-time condition prevents the undesirably large number of switches in the control signal as in Fig. 7(c) for the case \(\tau_D = 0 \). Not only the number of switches has decreased, see Fig. 8(c), the error profile also now gradually converges to \(e = 0 \) without the occurrence of a sudden unwanted peak (compare Figs. 7(a) and 8(a)).

5.4. Final note

The main motivation for and the rationale behind the design of the SPANI is to improve the transient performance of linear systems by reducing overshoot, which is successfully demonstrated in this section. It is important to note that, in general, it is hard to give any guarantees on the settling behavior. In the benchmark study presented in this section, we satisfied both our objectives, i.e., reducing overshoot and a faster convergence to an error bound. The secondary objective cannot always be guaranteed and it depends on the tuning of the dwell-time parameter \(\tau_D \) and the disturbance situation at hand. However, the primary objective of reducing overshoot is satisfied in all (considered) cases.

Remark 6. The interesting reader may consult (Hunnekens, 2014) for additional discussions and comments.

6. Conclusions

In this paper, we proposed the split-path nonlinear integrator (SPANI) as a novel variation/extension to a nonlinear filter that was originally introduced in the late 1960s. The SPANI is especially designed for transient performance improvement of linear systems. In particular, we focussed on the transient performance improvement in terms of overshoot to step responses, while being able to achieve zero steady-state errors in the presence of constant disturbances. By means of simulations it was demonstrated that, in particular situations, the SPANI controller can indeed outperform its linear counterpart. Moreover, a formal stability analysis was presented for this novel feedback control configuration with SPANI based on a hybrid dynamical system model for the closed-loop dynamics. Based on this hybrid modeling formalism, sufficient Lyapunov-based stability conditions have been provided in terms of linear matrix inequalities. These conditions proved to be useful in the design of the SPANI. A nice additional feature of the SPANI is that it is easy to apply in industrial practice as all the individual components of the proposed nonlinear controller can be synthesized using classical loop-shaping techniques. By presenting a fundamental modeling framework based on hybrid models and corresponding stability analysis tools, and also showing both the advantages and disadvantages of the SPANI controller, a complete design framework for SPANI controllers has been laid down.

Appendix. Hybrid systems notation

According to Goebel et al. (2012), a set \(E \subseteq \mathbb{R}_{\geq 0} \times \mathbb{N} \) is a compact hybrid time domain if \(E = \bigcup_{j=0}^{\infty} (t_j, t_{j+1}) / f \) is some finite sequence of times \(0 = t_0 \leq t_1 \leq t_2 \leq \ldots \leq t_j \). It is a hybrid time domain if for all \((T, J) \in E, E \cap (0, T] \times \{0, 1, \ldots, J\}\) is a compact hybrid time domain. A function \(\phi : \mathbb{R} \rightarrow \mathbb{R}^n \) is a hybrid arc if \(E \) is a hybrid time domain and if for each \(j \in \mathbb{N} \), the function \(t \rightarrow \phi(t, j) \) is locally absolutely continuous on the interval \(I_j = [t : (t, j) \in E] \). A hybrid arc \(\phi \) is a solution to the hybrid system \((F, f, \mathcal{X}, \mathcal{Y})\) if \(\phi(0, 0) \in \mathcal{F} \cup \mathcal{G} \), and

\[
(1) \text{ for all } j \in \mathbb{N} \text{ such that } I_j = [t : (t, j) \in \text{ dom } \phi \} \text{ has nonempty interior }
\]

\[
\phi(t, j) \in F \quad \text{ for all } t \in \text{int} \mathcal{F}
\]

\[
\phi(t, j) \in f(\phi(t, j) , \mathcal{X}(t, j)) \quad \text{ for almost all } t \in I_j
\]
Fig. 7. (a) Error profile for the region of interest using a 4th-order reference trajectory with an end position of 105 mm. (b) Error e versus integral action x_I. (c) Time versus output u, of the SPANI and integral action x_I.

Fig. 8. (a) Error profile for the region of interest using a 4th-order reference trajectory with an end position of 105 mm. (b) Error e versus integral action x_I. (c) Time versus output u, of the SPANI and integral action x_I. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(2) for all $(t, j) \in \text{dom } \phi$ such that $(t, j + 1) \in \text{dom } \phi$.

$$
\begin{align*}
\phi(t, j) & \in f, \\
\phi(t, j + 1) & \in g(\phi(t, j)).
\end{align*}
$$

References

