A Virtual Structure Approach to Formation Control of Unicycle Mobile Robots

T.H.A. van den Broek ∗, N. van de Wouw, H. Nijmeijer

Department of Mechanical Engineering, Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

In this paper, the formation control problem for unicycle mobile robots is studied. A virtual structure control strategy with mutual coupling between the robots is proposed. The rationale behind the introduction of the coupling terms is the fact that these introduce additional robustness with respect to perturbations as compared to typical leader-follower approaches. The applicability of the proposed approach is shown in experiments with a group of wirelessly controlled mobile robots.

1 Introduction

In this paper, the formation control problem (i.e. cooperative control problem) for unicycle mobile robots is considered. Formation control problems arise when groups of mobile robots are employed to jointly perform certain tasks. The benefits of exploiting groups of robots, as opposed to a single robot or a human, become apparent when considering spatially distributed tasks, dangerous tasks, tasks which require redundancy, tasks that scale up or down in time or tasks that require flexibility. Various areas of application of cooperative control of mobile robots are e.g. simultaneous localization and mapping [12], automated highway systems [6], payload transportation [30], RoboCup [17], enclosing an invader [31] and the exploration of an unknown environment [7]. In [2] and [18], an overview is given of what has been achieved with respect to cooperative control and the control of nonholonomic unicycle mobile robots, respectively.

∗Corresponding author. E-mail addresses: thijs.vandenbroek@tno.nl, {n.v.d.wouw,h.nijmeijer}@tue.nl
Before a wide application of cooperative mobile robotics will become feasible, many technical and scientific challenges must be faced such as the development of cooperative and formation control strategies, control schemes robust to communication constraints, the localization of the robot position, sensing and environment mapping, etc. In the current paper, the focus is on the aspect of cooperative control. In the recent literature, see e.g. [4, 8, 9, 11, 26], three different approaches towards the cooperative control of mobile robots are described: the behaviour-based approach, the leader-follower approach and the virtual structure approach. In the behaviour-based approach, a so-called behaviour (e.g. obstacle avoidance, target seeking) is assigned to each individual robot [3]. This approach can naturally be used to design control strategies for robots with multiple competing objectives. Moreover, it is suitable for large groups of robots, since it is typically a decentralized strategy. A disadvantage is that the complexity of the dynamics of the group of robots does not lend itself for simple mathematical stability analysis. To simplify the analysis, the dynamics of individual robots are commonly simplified as being described by a single integrator. Clearly, even kinematic models of mobile robots is more complex, limiting the applicability of this approach in practice.

In the leader-follower approach some robots will take the role of leader and aim to track predefined trajectories, while the follower robots will follow the leader according to a relative posture [5, 8, 9, 10, 13, 20, 28, 29, 32]. An advantage of this approach is the fact that it is relatively easy to understand and implement. A disadvantage, however, is the fact that there is no feedback from the followers to the leaders. Consequently, if a follower is being perturbed, the formation cannot be maintained and such a formation control strategy lacks robustness in the face of such perturbations.

A third approach in cooperative control is the virtual structure approach, in which the robots’ formation no longer consists of leaders nor followers, i.e. no hierarchy exists in the formation. In [27], a general controller strategy is developed for the virtual structure approach. Using this strategy, however, it is not possible to consider formations which are time-varying. Moreover, the priority of the mobile robots, either to follow their individual trajectories or to maintain the groups formation, can not be changed. In [11], a virtual structure controller is designed for a group of unicycle mobile robots using models involving the dynamics of the
robots. Consequently, the controller design tends to be rather complex, which is unfavorable from an implementation perspective, especially when kinematic models suffice. An advantage of the virtual structure approach is, as we will show in this paper, that it allows to attain a certain robustness of the formation to perturbations on the robots.

In this paper the design of a virtual structure controller is considered, which guarantees stability of the formation error dynamics for a group of nonholonomic unicycle mobile robots. To limit the complexity of the virtual structure controller, the controller design is based on the kinematics of unicycle mobile robots. Moreover, so-called mutual coupling terms will be introduced between the robots to ensure robustness of the formation with respect to perturbations. Finally, the control design is validated in an experimental setting.

This paper is organized as follows. In Section 2, preliminary technical results needed in the remainder of the paper are presented. The virtual structure control design, which uses the tracking controller of [14] as a stepping stone, and a stability proof for the formation error dynamics is given in Section 3. In Section 4, experiments are presented validating the proposed approach in practice. Section 5 present concluding remarks.

2 Preliminaries

Consider the following linear time-varying system

\[
\begin{align*}
\dot{x} &= A(t)x + B(t)u \\
y &= C(t)x,
\end{align*}
\] (1)

where matrices \(A(t), B(t), C(t)\) are matrices of appropriate dimensions whose elements are piecewise continuous functions of time. Let \(\Phi(t, t_0)\) denote the state-transition matrix for the system \(\dot{x} = A(t)x\).

Definition 2.1. [19] The pair \((A(t), C(t))\) is uniformly completely observable (UCO) if constants \(\delta, \epsilon_1, \epsilon_2 > 0\) exist such that \(\forall t > 0\):

\[
\epsilon_1 I_n \leq \int_{t-\delta}^{t} \Phi^T(\tau, t-\delta)C^T(\tau)C(\tau)\Phi(\tau, t-\delta) d\tau \leq \epsilon_2 I_n.
\] (2)

3
Definition 2.2. [19] A continuous function $\omega : \mathbb{R}^+ \to \mathbb{R}$ is said to be persistently exciting (PE) if $\omega(t)$ is bounded, Lipschitz, and constants $\delta_c > 0$ and $\epsilon > 0$ exist such that

$$\forall t \geq 0, \exists s : t - \delta_c \leq s \leq t \text{ such that } |\omega(s)| \geq \epsilon.$$ \hspace{1cm} (3)

The following corollary is based on Theorem 2.3.3, presented in [19], and will be used in the proof of Lemma 2.6.

Corollary 2.3. Consider the linear time-varying system

$$\dot{x} = A(\omega(t))x + Bu$$
$$y = Cx,$$ \hspace{1cm} (4)

where $A(\omega)$ is continuous and $\omega : \mathbb{R} \to \mathbb{R}$ is continuous. Assume that for all $s \neq 0$ the pair $(A(s), C)$ is observable. If $\omega(t)$ is persistently exciting, see Definition 2.2, then the system (4) is uniformly completely observable.

Consider the system $\dot{z} = f(t, z)$, $z \in \mathbb{R}^{n+m}$, which is decomposed as follows:

$$\dot{z}_1 = f_1(t, z_1) + g(t, z_1, z_2)z_2,$$
$$\dot{z}_2 = f_2(t, z_2),$$ \hspace{1cm} (5)

where $z_1 \in \mathbb{R}^n$, $z_2 \in \mathbb{R}^m$, $f_1(t, z_1)$ is continuously differentiable in (t, z_1) and $f_2(t, z_2)$, $g(t, z_1, z_2)$ are continuous in their arguments, and locally Lipschitz in z_2 and (z_1, z_2), respectively, and $(z_1, z_2) = (0, 0)$ is an equilibrium point of (5) $\forall t$.

Assumption 2.4. [22] Assume that there exist continuous functions $k_1, k_2 : \mathbb{R}^+ \to \mathbb{R}$ such that

$$\|g(t, z_1, z_2)\|_F \leq k_1(\|z_2\|_2) + k_2(\|z_2\|_2)\|z_1\|_2, \forall t \geq t_0,$$ \hspace{1cm} (6)

where $\|g(t, z_1, z_2)\|_F$ denotes the Frobenius norm of the matrix $g(t, z_1, z_2)$. The Frobenius norm is defined as $\|A\|_F = \left(\sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}|^2\right)^{1/2}$.

Then the following corollary can be derived from Theorem 1 in [23].
Corollary 2.5. The equilibrium point of the cascaded system of (5) is locally exponentially stable if the equilibrium point \(z_1 = 0 \) of \(\dot{z}_1 = f_1(t, z_1) \) is globally exponentially stable, \(g(t, z_1, z_2) \) satisfies Assumption 2.4 and the equilibrium point \(z_2 = 0 \) of \(\dot{z}_2 = f_2(t, z_2) \) is locally exponentially stable.

In the next result a sufficient condition is provided for the global exponential stability of the equilibrium point of a specific linear time-varying system, which will be used in Appendix B.

Lemma 2.6. The equilibrium point \(x = 0 \) of the system

\[
\begin{bmatrix}
-g_1 & g_2 \omega_d(t) & g_3 & -g_4 \omega_d(t) \\
-\omega_d(t) & 0 & 0 & 0 \\
g_3 & -g_4 \omega_d(t) & -g_1 & g_2 \omega_d(t) \\
0 & 0 & -\omega_d(t) & 0
\end{bmatrix} x
\]

(7)

is globally exponentially stable if \(-g_1 + g_3 < 0 \), \(-g_1 - g_3 < 0 \), \(g_2 \neq g_4 \), \(g_2 \neq -g_4 \) and \(\omega_d(t) \) is persistently exciting.

Proof. See Appendix A. \(\square\)

3 Virtual Structure Formation Control with Mutual Coupling

In Section 3.1, the kinematic model of a unicycle mobile robot is presented. In Section 3.2, a generic virtual structure formation controller, with mutual coupling between the robots, will be presented, which is based on the kinematic model of a unicycle. Moreover, in Section 3.3, a stability result for the formation error dynamics for the case of two robots is given.
3.1 Kinematics of a Unicycle Mobile Robot

The kinematics of the ith nonholonomic unicycle mobile robot, in a group of N robots, is described by the following differential equation:

\begin{align}
\dot{x}_i &= v_i \cos(\phi_i), \\
\dot{y}_i &= v_i \sin(\phi_i), \\
\dot{\phi}_i &= \omega_i,
\end{align}

with $i = 1, \ldots, N$ and where the coordinates x_i and y_i describe the position of the center of the ith mobile robot with respect to the fixed coordinate frame $\vec{e}_0 := [\vec{e}_0^1 \, \vec{e}_0^2]^T$ and the orientation ϕ_i is the angle between the heading of the ith robot and the x-axis of the fixed coordinate frame \vec{e}_0, see Figure 1. The forward velocity and rotational velocity are given by v_i and ω_i, respectively, which are the control inputs of the ith mobile robot. The reference trajectory is given by $(x_{di}(t), y_{di}(t), \phi_{di}(t))$. Due to the nonholonomic constraint of unicycle robots, the desired orientation $\phi_{di}(t)$ satisfies $-\dot{x}_{di} \sin(\phi_{di}) + \dot{y}_{di} \cos(\phi_{di}) = 0$, see Figure 1. The desired forward and rotational velocity $(v_{di}(t), \omega_{di}(t))$ are defined as

\begin{align}
v_{di} &= \sqrt{\dot{x}_{di}^2 + \dot{y}_{di}^2}, \\
\omega_{di} &= \frac{x_{di} \dot{y}_{di} - \dot{x}_{di} y_{di}}{\dot{x}_{di}^2 + \dot{y}_{di}^2},
\end{align}
for \(\dot{x}_{di}, \dot{y}_{di} \neq 0 \). Define the tracking error coordinates \((x_{ei}, y_{ei}, \phi_{ei})\) as follows:

\[
\begin{bmatrix}
 x_{ei} \\
y_{ei} \\
\phi_{ei}
\end{bmatrix} = \begin{bmatrix}
cos(\phi_i) & sin(\phi_i) & 0 \\
-sin(\phi_i) & cos(\phi_i) & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_{di} - x_i \\
y_{di} - y_i \\
\dot{\phi}_{di} - \dot{\phi}_i
\end{bmatrix},
\]

(10)

see also Figure 1. We will exploit these error coordinate definitions in the stability proof of the formation error dynamics in Section 3.3.

3.2 Virtual Structure Control Design

We design a virtual structure controller, with mutual coupling between \(N \) individual robots, such that a desired formation is achieved. The main goals of the virtual structure controller are twofold. Firstly, the formation as a whole should follow a predefined trajectory; i.e. a so-called virtual center should follow a predefined trajectory and the \(i \)-th unicycle robot, \(i \in \{1, \ldots, N\} \), should follow at a certain predefined, and possibly time-varying, location \((l_{xi}, l_{yi})\) relative to the virtual center. Secondly, if the individual robots suffer from perturbations, the controller should mediate between keeping formation and ensuring the tracking of the individual robots’ desired trajectories, which is facilitated by introducing mutual coupling between the robots.

In Figure 2, for the purpose of illustration two mobile robots and the virtual center \(VC \) of the formation are shown. The reference trajectory of the virtual center is described by the coordinates \((x_{vc}(t), y_{vc}(t))\) defining the position of the virtual center with respect to the fixed coordinate frame \(\hat{e}_0 \). The desired trajectories of the individual robots \((x_{di}(t), y_{di}(t))\), \(i = 1, \ldots, N \), are described as

\[
\begin{bmatrix}
x_{di}(t) \\
y_{di}(t)
\end{bmatrix} = \begin{bmatrix}
x_{vc}(t) \\
y_{vc}(t)
\end{bmatrix} + \begin{bmatrix}
cos(\phi_{vc}(t)) & -\sin(\phi_{vc}(t)) \\
\sin(\phi_{vc}(t)) & \cos(\phi_{vc}(t))
\end{bmatrix} \begin{bmatrix}
l_{xi}(t) \\
l_{yi}(t)
\end{bmatrix},
\]

(11)

where \(\phi_{vc}(t) \) is the orientation of the virtual center along its trajectory and \((l_{xi}(t), l_{yi}(t))\) is possibly time-varying to allow for time-varying formation shapes. Now, the tracking controller of [14] is expanded with so-called mutual coupling terms. In [25], such terms were introduced
at the level of the desired trajectories to achieve mutual synchronization between industrial robots. This type of mutual coupling, which is located at the desired trajectory level, is not possible for unicycle mobile robots due to the nonholonomic constraints. Here, we propose to introduce the coupling directly in the feedback control strategy arriving at the following control law:

\[
\begin{align*}
\omega_i &= \omega_{di} + \alpha_i \sin(\phi_{ei}) + \sum_{j=1,i\neq j}^{N} \tilde{\alpha}_{i,j} \sin(\phi_{ei} - \phi_{ej}) \\
v_i &= v_{di} + \beta_i x_{ei} - \gamma_i \omega_{di} y_{ei} + \sum_{j=1,i\neq j}^{N} \tilde{\beta}_{i,j} (x_{ei} - x_{ej}) - \sum_{j=1,i\neq j}^{N} \tilde{\gamma}_{i,j} \omega_{di} (y_{ei} - y_{ej}),
\end{align*}
\]

\(i = 1, ..., N\), where the feedforward velocities \((v_{di}, \omega_{di})\) and the error coordinates \((x_{ei}, y_{ei}, \phi_{ei})\) are defined in (9) and (10), respectively, and with \(\alpha_i > 0, \beta_i > 0\) and \(\gamma_i > -1, i = 1, ..., N\). Moreover, \(\tilde{\alpha}_{i,j} > 0, \tilde{\beta}_{i,j} > 0\) and \(\tilde{\gamma}_{i,j} > 0\), which represent mutual coupling parameters, and the subscript \(i = 1, ..., N\) denotes the \(i\)th mobile robot, which is mutually coupled to the \(j\)th mobile robot.
Before a stability proof for the formation error dynamics of a group of unicycles under application of the virtual structure controller of (12) is presented in the next section, let us explain the working principle of the controller in (12). For the sake of simplicity, we limit ourselves to the case of two mobile robots. Assume that robot 2 resides on its desired trajectory, i.e. \((x_{e2}, y_{e2}, \phi_{e2}) = 0\). According to (12) this results in the following individual control inputs of robots 1 and 2:

\[
\begin{align*}
\omega_1 &= \omega_{d1} + \alpha_1 \sin(\phi_{e1}) + \tilde{\alpha}_{1,2} \sin(\phi_{e1}), \\
v_1 &= v_{d1} + \beta_1 x_{e1} - \gamma_1 \omega_{d1} y_{e1} + \tilde{\beta}_{1,2} x_{e1} - \tilde{\gamma}_{1,2} \omega_{d1} y_{e1},
\end{align*}
\]

and

\[
\begin{align*}
\omega_2 &= \omega_{d2} - \tilde{\alpha}_{2,1} \sin(\phi_{e1}), \\
v_2 &= v_{d2} - \tilde{\beta}_{2,1} x_{e1} + \tilde{\gamma}_{2,1} \omega_{d2} y_{e1},
\end{align*}
\]

respectively. Moreover, it is assumed that robot 1 is not on its desired trajectory, e.g. \(x_{e1}, y_{e1}, \phi_{e1} > 0\). Note that the terms \(-\tilde{\alpha}_{2,1} \sin(\phi_{e1}), -\tilde{\beta}_{2,1} x_{e1} \) and \(\tilde{\gamma}_{2,1} \omega_{d2} y_{e1}\) in (14), with \(x_{e1}, y_{e1}, \phi_{e1} > 0\), have a similar effect as terms \(\alpha_2 \sin(\phi_{e2}), \beta_2 x_{e2}\) and \(-\gamma_2 \omega_{d2} y_{e2}\) would, with \(x_{e2}, y_{e2}, \phi_{e2} < 0\). In other words, the mutual coupling terms are acting as if robot 2 is behind its desired trajectory (i.e. as if \(x_{e2} < 0\)), below its desired trajectory (i.e. as if \(y_{e2} < 0\)) and orientated in clockwise direction relative to the desired trajectory (i.e as if \(\phi_{e2} < 0\)). Consequently, the controller for robot 2 will try to compensate for these errors, which results in the fact that the formation will remain (partly) intact. The second effect of the mutual coupling term is that robot 1 in this case is subject to effective gains \(\alpha_1 + \tilde{\alpha}_{1,2}, \beta_1 + \tilde{\beta}_{1,2}\) and \(\gamma_1 + \tilde{\gamma}_{1,2}\) in (13).

3.3 Stability Analysis of the Formation Error Dynamics

In this section, the stability of the resulting formation error dynamics under application of the controller (12) is analyzed for the specific case of a formation of two mobile robots. The formation error dynamics of two mobile robots, described by (8) and the controller (12), can
be written in the following cascaded form:

\[
\begin{bmatrix}
\dot{x}_{e1} \\
\dot{y}_{e1} \\
\dot{x}_{e2} \\
\dot{y}_{e2}
\end{bmatrix}
= f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}) + g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2})
\begin{bmatrix}
\phi_{e1} \\
\phi_{e2}
\end{bmatrix}
\]

(15)

where

\[
f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}) =
\begin{bmatrix}
y_{e1}\omega_{d1} - \beta_1 x_{e1} + \gamma_1 \omega_{d1} y_{e1} - \tilde{\beta}_{1,2}(x_{e1} - x_{e2}) + \tilde{\gamma}_{1,2}\omega_{d1}(y_{e1} - y_{e2}) \\
-\omega_{d1} x_{e1} \\
y_{e2}\omega_{d2} - \beta_2 x_{e2} + \gamma_2 \omega_{d2} y_{e2} - \tilde{\beta}_{2,1}(x_{e2} - x_{e1}) + \tilde{\gamma}_{2,1}\omega_{d2}(y_{e2} - y_{e1}) \\
-\omega_{d2} x_{e2}
\end{bmatrix},
\]

(16)

\[
f_2(t, \phi_{e1}, \phi_{e2}) =
\begin{bmatrix}
-\alpha_1 \sin(\phi_{e1}) - \tilde{\alpha}_{1,2} \sin(\phi_{e1} - \phi_{e2}) \\
-\alpha_2 \sin(\phi_{e2}) - \tilde{\alpha}_{2,1} \sin(\phi_{e2} - \phi_{e1})
\end{bmatrix},
\]

(17)

and

\[
g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2})
\begin{bmatrix}
\phi_{e1} \\
\phi_{e2}
\end{bmatrix}
=
\begin{bmatrix}
\alpha_1 y_{e1} \sin(\phi_{e1}) + y_{e1} \tilde{\alpha}_{1,2} \sin(\phi_{e1} - \phi_{e2}) - v_{d1} + v_{d1} \cos(\phi_{e1}) \\
-\alpha_1 x_{e1} \sin(\phi_{e1}) - x_{e1} \tilde{\alpha}_{1,2} \sin(\phi_{e1} - \phi_{e2}) + v_{d1} \sin(\phi_{e1}) \\
\alpha_2 y_{e2} \sin(\phi_{e2}) + y_{e2} \tilde{\alpha}_{2,1} \sin(\phi_{e2} - \phi_{e1}) - v_{d2} + v_{d2} \cos(\phi_{e2}) \\
-\alpha_2 x_{e2} \sin(\phi_{e2}) - x_{e2} \tilde{\alpha}_{2,1} \sin(\phi_{e2} - \phi_{e1}) + v_{d2} \sin(\phi_{e2})
\end{bmatrix},
\]

(18)

with \(\alpha_i > 0, \beta_i > 0, \gamma_i > -1, i = 1, 2, \tilde{\alpha}_{i,j} > 0, \tilde{\beta}_{i,j} > 0\) and \(\tilde{\gamma}_{i,j} > 0, i = 1, 2, j = 1, 2, i \neq j\). The following theorem gives sufficient conditions under which the equilibrium point \((x_{e1}, y_{e1}, \phi_{e1}) = 0, i = 1, 2, \) of the formation error dynamics (15)-(18) is locally exponentially stable. In other words, the formation control problem is solved locally.

Theorem 1. Consider two non-holonomic unicycle mobile robots whose kinematics are de-
scribed by (8). Suppose that the desired tracking state trajectories of the individual robots \((x_{di}(t), y_{di}(t)), i = 1, 2\) are given by (11) for a given trajectory \((x_{vc}(t), y_{vc}(t))\) for the virtual center. Moreover, the desired orientations \(\phi_{di}(t), i = 1, 2\) are imposed by the non-holonomic constraint. Consider controller (12) for \(N = 2\), with the feedforwards \(v_{di}, \omega_{di}, i = 1, 2\), satisfying (9). If

- the desired rotational velocities \(\omega_{di}, i = 1, 2\), of both mobile robots are persistently exciting and identical, i.e. \(\omega_{d1} = \omega_{d2}\);
- the control parameters \(\alpha_i > 0, i = 1, 2, \beta_1 = \beta_2 > 0\) and \(\gamma_1 = \gamma_2 > -1\);
- the coupling parameters \(\tilde{\alpha}_{i,j} > 0\), for \(i = 1, 2, j = 1, 2, i \neq j\), \(\tilde{\beta}_{1,2} = \tilde{\beta}_{2,1} > -\frac{\beta_1}{2}\) and \(\tilde{\gamma}_{1,2} = \tilde{\gamma}_{2,1} \neq -\frac{1-\gamma_1}{2}\),

then the equilibrium point \((x_e1, y_e1, \phi_e1, x_e2, y_e2, \phi_e2) = 0\) of the formation error dynamics (15)-(18) is locally exponentially stable.

Proof. See Appendix B.

Remark I. In practice we typically choose the coupling parameters such that \(\tilde{\alpha}_{i,j} > 0, \tilde{\beta}_{i,j} > 0, \tilde{\gamma}_{i,j} > 0\) (which reflect more strict conditions than those in the theorem), because if we would opt for \(-\frac{\beta_1}{2} < \tilde{\beta}_{i,j} \leq 0\) and \((\tilde{\gamma}_{i,j} \leq 0) \land (\tilde{\gamma}_{i,j} \neq -\frac{1-\gamma_1}{2})\), then (although stability is not endangered) undesirable transient behaviour of the formation may be induced.

Remark II. Simulations, with more than two robots, moving with different desired rotational velocities \(\omega_{di}\), different control parameters \((\beta_i, \gamma_i)\) and different coupling parameters \((\tilde{\beta}_{i,j}, \tilde{\gamma}_{i,j})\), show that the error dynamics of the virtual structure controller is stable in a more general setting. In the current paper, we refrain from such technical extensions, but rather focus on the experimental validation of the proposed approach, which is shown in the next section.

4 Experiments

In this section experiments are performed to validate in practice the controller design, proposed in the previous section. In Section 4.1, the experimental setup is presented and experimental results are discussed in Section 4.2.
4.1 Experimental Setup

The experimental setup is shown in Figure 3. The experiments are performed with two E-Puck mobile robots [21]. The E-Puck robot has two driven wheels, which are individually actuated by means of stepper motors. Velocity control commands are sent to both stepper motors over a wireless BlueTooth connection. The absolute position measurement of the mobile robots is performed using a Firewire camera AVT Guppy F-080b b/w [1], in combination with reacTIVision software [15]. We note that the achieved position and orientation accuracy of these position measurements are 0.0019 m in x- and y-direction and 0.0524 rad in ϕ-direction, and the driving area of the mobile robots is 1.75 by 1.28 m. The sample rate is given as 25 Hz. Both signal processing and controller implementation is executed in Python [24].

4.2 Experimental Results

In this section, the results of an experiment with two mobile robots driving in formation are discussed. The trajectory of the virtual center is given by $x_{vc}(t) = 0.9 + 0.3\cos(2\pi0.02t)$
and \(y_{vc}(t) = 0.6 + 0.3\sin(2\pi 0.02t) \) [m]. The desired trajectories of the mobile robots are defined according to (11), with \(l_{x1} = 0.1 \text{ m}, l_{y1} = 0.1 \text{ m}, l_{x2} = -0.1 \text{ m} \) and \(l_{y2} = 0 \text{ m} \), respectively. In other words, the virtual center moves in a circular motion, robot 1 is positioned ahead and left of the virtual center and robot 2 is positioned behind the virtual center. The controllers of both robots are of the form (12), where the control and coupling parameters satisfy the conditions of Theorem 1 and given by \(\alpha_i = 0.3, \beta_i = 0.275, \gamma_i = 1.3, i = 1, 2, \tilde{\alpha}_{i,j} = 3, \tilde{\beta}_{i,j} = 2.75 \) and \(\tilde{\gamma}_{i,j} = 13, i = 1, 2, j = 1, 2, i \neq j \). The control and coupling parameters are tuned to demonstrate the main goal of the experiment, which is to illustrate that the two mobile robots attain formation asymptotically and prefer to maintain formation, as opposed to following their individual desired trajectories. This type of behaviour is due to the relatively strong coupling parameters \((\tilde{\alpha}_{i,j}, \tilde{\beta}_{i,j}, \tilde{\gamma}_{i,j}) \). Two types of perturbations are applied to illustrate the behaviour of the mobile robots in the face of perturbations. The first perturbation involves both the forward velocity \(v_1 \) and rotational velocity \(\omega_1 \) of robot 1 as follows:

\[
\begin{align*}
\omega_1 &= \omega_{d1} + \alpha_1 \sin(\phi_{e1}) + \tilde{\alpha}_{1,2} \sin(\phi_{e1}) + 0.5, \\
v_1 &= v_{d1} + \beta_1 x_{e1} - \gamma_1 \omega_{d1} y_{e1} + \tilde{\beta}_{1,2} x_{e1} - \tilde{\gamma}_{1,2} \omega_{d1} y_{e1} + 0.3,
\end{align*}
\]

for \(t \in [35, 36] \) s. The second perturbation takes place at \(t = 56 \) s; here, robot 1 is repositioned manually. In Figure 4, the desired trajectories and actual trajectories of robots 1 and 2 are shown. Robot 1 initially moves backwards and away from its desired trajectory, thereby aiming to achieve the desired formation with robot 2 as fast as possible. A closer inspection of the trajectory of robot 2 reveals that the effects of the disturbances on robot 1 are clearly noticeable in the behaviour of robot 2. In Figure 5, the error coordinates of the individual robots \((x_{e1}, y_{e1}, \phi_{e1}, x_{e2}, y_{e2}, \phi_{e2})\) and the error coordinates of the formation \((x_{e1} - x_{e2}, y_{e1} - y_{e2}, \phi_{e1} - \phi_{e2})\) are shown. This figure clearly shows that the robots converge to the desired formation within 15 s. Within 25 s, the robots have also converged to their desired trajectories. Clearly, both in transients and after perturbations the robots first converge to their desired formation, and then converge to their desired trajectories. This behaviour is due to the choice for strong coupling parameters, i.e. the robots priority is to maintain the formation. In Figure 6 (a zoomed version of Figure 5), the error coordinates of robots 1 and 2 are displayed for the
time interval $t \in [30, 90]$ s. During the perturbations, robot 2 is reacting to the error of robot 1, thereby trying to remain in formation. Clearly, this experiment shows that the mutual coupling terms in the proposed controlled strategy provides robustness to the formation in the face of perturbations. Moreover, the tuning of the coupling control gains provides a means to mediate between the individual tracking of the robots’ desired trajectories and the goal of achieving formation.

5 Conclusions

In this paper a virtual structure controller is designed for the formation control of unicycle mobile robots. We have proposed a controller, which introduces mutual coupling between the individual robots, thereby providing more robustness to the formation in the face of perturbations as compared to leader-follower (i.e. master-slave) type approaches. Moreover, an explicit stability proof is given for the case of two cooperating mobile robots. Experiments
Figure 5: Experimental evolution of the error coordinates of robots 1 and 2 for the virtual structure approach with strong coupling parameters with perturbations.

performed with an experimental setup for multi-robot systems demonstrate the practical applicability of the approach. Moreover, these experiments also show that the tuning of the mutual coupling parameters provides a means to weigh the importance of maintaining formation versus the importance of the individual robots tracking their individual desired trajectories.
Appendices

A Proof of Lemma 2.6

Here, it is shown that the equilibrium point $x = 0$ of the following system (system (7) in Lemma 2.6) is globally exponentially stable (GES):

$$
\dot{x} = \begin{bmatrix}
-g_1 & g_2 \omega_d(t) & g_3 & -g_4 \omega_d(t) \\
-\omega_d(t) & 0 & 0 & 0 \\
g_3 & -g_4 \omega_d(t) & -g_1 & g_2 \omega_d(t) \\
0 & 0 & -\omega_d(t) & 0
\end{bmatrix} x =: G(t)x.
$$ \hspace{1cm} (20)
Apply a coordinate transformation $x = Uz$ with the following well-defined transformation matrix U:

$$
U = \begin{bmatrix}
0 & \frac{1}{2}\sqrt{g_2 - g_4} & -\frac{1}{2} & 0 \\
-\frac{1}{2\sqrt{g_2 + g_4}} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2}\sqrt{g_2 - g_4} & \frac{1}{2} & 0 \\
\frac{1}{2\sqrt{g_2 + g_4}} & 0 & 0 & \frac{1}{2}
\end{bmatrix}.
$$

(21)

With this change of coordinates the following system dynamics results:

$$
\dot{z} = \begin{bmatrix}
0 & 0 & -a_1\omega(t) & 0 \\
0 & -a_2 & 0 & a_3\omega(t) \\
a_1\omega(t) & 0 & -a_4 & 0 \\
0 & -a_3\omega(t) & 0 & 0
\end{bmatrix}z =: A(t)z,
$$

(22)

where $a_1 = \sqrt{g_2 + g_4}$, $a_2 = g_1 - g_3$, $a_3 = \sqrt{g_2 - g_4}$ and $a_4 = g_1 + g_3$. Note that the system matrix $A(t)$ in (22) is skew-symmetric.

The following quadratic candidate Lyapunov function

$$
V = z^T P z = \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2 + \frac{1}{2}z_3^2 + \frac{1}{2}z_4^2,
$$

(23)

with $P = \frac{1}{2}I$, is differentiated along the solutions of (22) to obtain

$$
\dot{V} = z^T (A^T(t)P + PA(t))z = (-g_1 + g_3)z_2^2 + (-g_1 - g_3)z_3^2.
$$

(24)

Consequently, \dot{V} is negative semi-definite if $-g_1 + g_3 < 0$ and $-g_1 - g_3 < 0$.

Let us first show that the following inequality holds:

$$
z^T (A^T(t)P + PA(t))z \leq -z^T C^T C z,
$$

(25)
for

\[C = \begin{bmatrix} 0 & \frac{1}{2}\sqrt{g_1 - g_3} & \frac{1}{2}\sqrt{g_1 + g_3} & 0 \end{bmatrix}. \]

(26)

Clearly, \(z^T C^T C z = \frac{1}{4}(g_1 - g_3)z_2^2 + \frac{1}{2}\sqrt{g_1 - g_3}\sqrt{g_1 + g_3}z_2z_3 + \frac{1}{2}(g_1 + g_3)z_3^2 \geq 0 \), and using the fact that \(\frac{1}{2}\sqrt{g_1 - g_3}\sqrt{g_1 + g_3}z_2z_3 \leq \frac{1}{2}(g_1 - g_3)z_2^2 + \frac{1}{2}(g_1 + g_3)z_3^2 \), we obtain

\[-z^T C^T C z \geq -\frac{1}{2}(g_1 - g_3)z_2^2 - \frac{1}{2}(g_1 + g_3)z_3^2 \]

\[\geq (g_1 - g_3)z_2^2 + (g_1 + g_3)z_3^2. \]

(27)

Combining (24) and (27) proves the validity of inequality (25). Furthermore, using Corollary 2.3 it can easily be shown that system (22) is uniformly completely observable. The latter fact, together with the satisfaction of inequality (25), implies that \(z = 0 \) is a globally exponentially stable equilibrium point of (22), see e.g. [16]. Consequently, \(x = 0 \) is a globally exponentially stable equilibrium point of (20). This completes the proof.

B Proof of Theorem 1

Note that the formation error dynamics of both robots can be described by (15)-(18). Note, moreover, that (15) is of the form (5) and Corollary 2.5 will be exploited to show that the equilibrium point \((x_{e1}, y_{e1}, \phi_{e1}, x_{e2}, y_{e2}) = 0\) of the error dynamics (15)-(18) is locally exponentially stable. First, the global exponential stability of the \(f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}) \) part of the \((x_{e1}, y_{e1}, x_{e2}, y_{e2})\)-dynamics, see (16), is proven. Second, the local exponential stability of the \((\phi_{e1}, \phi_{e2})\)-dynamics of (17) is proven. Third, it is shown that \(g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2}) \) as in (18) satisfies Assumption 2.4. According to Corollary 2.5 the satisfaction of these three conditions implies that the equilibrium point \((x_{ei}, y_{ei}, \phi_{ei}) = 0, i = 1, 2\), of the formation error dynamics is locally exponentially stable.

A. Global exponential stability of the \(f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}) \) part of the \((x_{e1}, y_{e1}, x_{e2}, y_{e2})\)-dynamics
Consider the linear time-varying system \([\dot{x}_{e1}, \dot{y}_{e1}, \dot{x}_{e2}, \dot{y}_{e2}]^T = f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2})\), with

\[
f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}) = \begin{bmatrix}
-\beta_1 - \tilde{\beta}_{1,2} & (1 + \gamma_1 + \tilde{\gamma}_{1,2})\omega_{d1}(t) & \beta_{1,2} & -\tilde{\gamma}_{1,2}\omega_{d1}(t) \\
-\omega_{d1}(t) & 0 & 0 & 0 \\
\tilde{\beta}_{2,1} & -\tilde{\gamma}_{2,1}\omega_{d2}(t) & -\beta_2 - \tilde{\beta}_{2,1} & (1 + \gamma_2 + \tilde{\gamma}_{2,1})\omega_{d2}(t) \\
0 & 0 & -\omega_{d2}(t) & 0 \\
\end{bmatrix}
\]

Since \(\beta_1 = \beta_2 > 0\), \(\tilde{\beta}_{1,2} = \tilde{\beta}_{2,1} > -\frac{\beta_1}{2}\), \(\gamma_1 = \gamma_2 \neq -1\), \(\tilde{\gamma}_{1,2} = \tilde{\gamma}_{2,1} \neq \frac{1-\gamma_1}{2}\) and \(\omega_{d1}(t) = \omega_{d2}(t)\) is persistently exciting, Lemma 2.6 can be directly exploited to prove that the origin of the system \([\dot{x}_{e1}, \dot{y}_{e1}, \dot{x}_{e2}, \dot{y}_{e2}]^T = f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2})\), with \(f_1(t, x_{e1}, y_{e1}, x_{e2}, y_{e2})\) as in (28), is globally exponentially stable.

B. Local exponential stability of the \((\phi_{e1}, \phi_{e2})\)-dynamics

Note that \(\phi_e = (\phi_{e1}, \phi_{e2})^T = 0\) is an equilibrium point of the \((\phi_{e1}, \phi_{e2})\)-dynamics in (15) with \(f_2(t, \phi_{e1}, \phi_{e2})\) as defined in (17). If these dynamics are linearized around this equilibrium point we obtain linear time-invariant dynamics with the following system matrix:

\[
A = \frac{\partial f_2}{\partial \phi_e}(\phi_e) \bigg|_{\phi_e=0} = \begin{bmatrix}
-\alpha_1 - \tilde{\alpha}_{1,2} & \tilde{\alpha}_{1,2} \\
\tilde{\alpha}_{2,1} & -\alpha_2 - \tilde{\alpha}_{2,1}
\end{bmatrix},
\]

which is Hurwitz for \(\alpha_i > 0\), \(i = 1, 2\) and \(\tilde{\alpha}_{i, j} > 0\) for \(i, j = 1, 2\) and \(i \neq j\). Consequently, \(\phi_e = 0\) is a locally exponentially stable equilibrium point of the \(\phi_e\)-dynamics for \(\alpha_i > 0\), \(i = 1, 2\), and \(\tilde{\alpha}_{i, j} > 0\) for \(i, j = 1, 2\) and \(i \neq j\).

C. Matrix \(g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2})\) satisfies Assumption 2.4

The matrix \(g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2})\), as defined in (18), can be written as follows:

\[
g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2}) \begin{bmatrix}
\phi_{e1} \\
\phi_{e2}
\end{bmatrix} = \begin{bmatrix}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{bmatrix}
\begin{bmatrix}
\phi_{e1} \\
\phi_{e2}
\end{bmatrix},
\]

(30)
where

\[
\begin{align*}
g_{11} & = \begin{bmatrix}
\alpha_1 y_{e1} & \int_0^1 \cos(s\phi_{e1})ds + y_{e1}\alpha_1 \cos(\phi_{e2}) & \int_0^1 \cos(s\phi_{e1})ds - v_{d1} & \int_0^1 \sin(s\phi_{e1})ds \\
-x_{e1} & \int_0^1 \cos(s\phi_{e1})ds - x_{e1}\alpha_1 \cos(\phi_{e2}) & \int_0^1 \cos(s\phi_{e1})ds - v_{d1} & \int_0^1 \cos(s\phi_{e1})ds \\
\end{bmatrix} \\
g_{12} & = \begin{bmatrix}
-y_{e1}\alpha_2 \cos(\phi_{e2}) & \int_0^1 \cos(s\phi_{e2})ds \\
x_{e1}\alpha_2 \cos(\phi_{e1}) & \int_0^1 \cos(s\phi_{e2})ds \\
\end{bmatrix} \\
g_{21} & = \begin{bmatrix}
-y_{e2}\alpha_2 \cos(\phi_{e1}) & \int_0^1 \cos(s\phi_{e1})ds \\
x_{e2}\alpha_2 \cos(\phi_{e1}) & \int_0^1 \cos(s\phi_{e2})ds \\
\end{bmatrix} \\
g_{22} & = \begin{bmatrix}
\alpha_2 y_{e2} & \int_0^1 \cos(s\phi_{e2})ds + y_{e2}\alpha_2 \cos(\phi_{e1}) & \int_0^1 \cos(s\phi_{e2})ds - v_{d2} & \int_0^1 \sin(s\phi_{e2})ds \\
-x_{e2} & \int_0^1 \cos(s\phi_{e2})ds - x_{e2}\alpha_2 \cos(\phi_{e1}) & \int_0^1 \cos(s\phi_{e2})ds + v_{d2} & \int_0^1 \cos(s\phi_{e2})ds \\
\end{bmatrix}.
\end{align*}
\]

Straightforward calculations show that the Frobenius norm of matrix \(g(t, x_{e1}, y_{e1}, x_{e2}, y_{e2}, \phi_{e1}, \phi_{e2}) \) satisfies the following inequality

\[
||g(t, x_{e1}, y_{e1}, \phi_{e1})||_F \leq 2(||v_{d1}|| + ||v_{d2}||) + 8(||\alpha_1|| + ||\alpha_2|| + ||\alpha_{1,2}|| + ||\alpha_{2,1}||)
\]

which implies the satisfaction of Assumption 2.4. Since, it has now been shown that all conditions of Corollary 2.5 hold, this corollary can be used to show that the origin of the formation error dynamics of the virtual structure controller is locally exponentially stable. This completes the proof.

References

