PHILIPS

Identification of Inverse Models for Feedforward Compensation: An Optimal IV Approach

Frank Boeren
Lennart Blanken
Tom Oomen
f.a.j.boeren@tue.nl
Control Systems Technology
Dept. of Mechanical Engineering

Estimation of Inverse Systems

Feedforward controller $C_{ff}(q, \theta) = \frac{B(q, \theta)}{A(q, \theta)}$ How to maximize accuracy properties?

Estimation/Identification of inverse system P^{-1}

Measurements in a closed-loop configuration

⇒ Instrumental Variable approach [2]

Pursued IV Approach

IV criterion:

$$V(\theta^{j+1}) = \left\| \frac{1}{N} \sum_{t=1}^{N} z^{T}(t) L(q) \hat{e}^{j+1}(t, \theta^{j+1}) \right\|_{W}^{2}$$

with (filtered) r as instrument, predicted error

$$\hat{\mathbf{e}}^{j+1}(t,\hat{\theta}^{j+1}) = \frac{1}{B(q,\hat{\theta}^{j+1})} \mathbf{e}_{m}^{j}(t) - \varphi^{T}(t,\hat{\theta}^{j+1})\hat{\theta}^{j+1}$$

and
$$\varphi(t, \hat{\theta}^{j+1}) = \frac{1}{B(q, \hat{\theta}^{j+1})} \begin{bmatrix} \Psi_A(q)C^{-1}(q)y_m^j(t) \\ -\Psi_B(q)e_m^j(t) \end{bmatrix}$$

Key questions:

- 1. How to solve nonlinear optimization problem?
- 2. How to determine z(t) and L(q) for optimal accuracy?

Optimal IV for Feedforward

Closed-loop ID with BJ model structure:

 \Rightarrow Requires estimation of *H* for optimal accuracy [3]

Feedforward Control

Minimum variance feedback control: SH = 1

 \Rightarrow Estimating H not required for optimal accuracy

Still, $z_{\text{opt}}(t)$ depends on noise-free regressor φ_r

Pursued iterative IV approach:

- 1. Deal with nonlinear optimization problem
- 2. Refine instrumental variables to improve accuracy

Non-causal approach (stable inversion) for NMP zeros in P

Experimental Results

Estimated parameters of $C_{ff}(\theta)$ in m=10 experiments with optimal instruments. For non-optimal instruments, a huge variance is obtained.

Worst-case performance based on estimated parameters in m=10 experiments (green) compared to only feedback (red). Remaining repeating error: mainly cable slab.

Estimation of P^{-1} directly linked with control performance

Ongoing Research

- bias aspects in inverse model identification [5]
- MIMO systems

References

[1] F. Boeren, L. Blanken, D. Bruijnen, and T. Oomen, Optimal estimation of rational feedforward controllers: An instrumental variable approach, Proc. of the Conference on Decision and Control, Osaka, Japan, 2015.

[2] T. Söderström, P.G. Stoica and E. Trulsson, Instrumental variable methods for closed loop systems, Proc. of IFAC World Congress, 1987.

[3] M. Gilson, H. Garnier, P. Young and P.M.J. Van den Hof, Optimal instrumental variable method for closed-loop identification, IET Control Theory and Applications, 5(10), pp. 1147-1154, 2011.

[5] Y. Jung and M. Enqvist, Estimating models of inverse systems, Proc. of the Conference on Decision and Control, Firenze, Italy, 2013.

a Nanamatarii (no. 12072) ayardad bu NNNO (The Natharlands Organisation for Esiantific Decaysh) and CTM (Outsh Esianes Esyndation)