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Abstract

Feedforward control can effectively compensate for the servo error induced by the reference signal if it is tuned appropriately.
This paper aims to introduce a new joint input shaping and feedforward parametrization in iterative feedforward control. Such a
parametrization has the potential to significantly improve the performance for systems executing a point-to-point reference trajec-
tory. The proposed approach enables an efficient optimization procedure with global convergence. A simulation example and an
experimental validation on an industrial motion system confirm i) the performance improvement obtained by means of the joint
input shaping and feedforward parametrization compared to pre-existing results, and ii) the efficiency of the proposed optimization
procedure.
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1. INTRODUCTION

Feedforward control is widely used in systems that are sub-
ject to stringent performance requirements, since feedforward
can effectively compensate for the servo error induced by the
reference signal. For motion systems, significant performance
enhancements have been reported by using feedforward, in-
cluding model-based feedforward and Iterative Learning Con-
trol (ILC), to compensate for the error signal induced by the
reference trajectory, see, e.g., [1], [2], [3] and [4].

Model-based feedforward results in general in good perfor-
mance and facilitates extrapolation capabilities of reference tra-
jectories. In model-based feedforward, a parametric model is
determined that approximates the inverse of the system [2],
[5]. The performance improvement induced by model-based
feedforward is highly dependent on i) the model quality of the
parametric model of the system and ii) the accuracy of model-
inversion [6]. ILC results in superior performance with respect
to model-based feedforward, but in general at the expense of
poor extrapolation capabilities with respect to varying reference
trajectories. By learning from previous iterations, high perfor-
mance is obtained for a single, specific reference trajectory.

The approach presented in [7] combines the advantages of
model-based feedforward and ILC, resulting in both high per-
formance and extrapolation capabilities of reference trajecto-
ries. To this purpose, basis functions are introduced such that
the feedforward controller approximates the inverse of the sys-
tem. In [8] and [9] it is shown that such an iterative feedforward
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approach with polynomial basis functions results in a signif-
icant performance improvement for an industrial motion sys-
tem. This is explained by observing that the rigid-body dy-
namics and quasi-static behavior of a motion system, i.e., the
dynamical behavior responsible for the dominant contribution
to the servo error, are captured by polynomial basis functions
[10]. In addition, in [11] it is shown that the feedforward con-
troller is determined by means of convex optimization with an
analytic solution.

Next-generation motion systems exhibit flexible dynamical
behavior at lower frequencies, see, e.g., [12]. As a result, the
dynamical behavior responsible for the dominant contribution
to the servo error is not fully encompassed by a feedforward
controller consisting of polynomial basis functions, hampering
the performance of the system. The introduction of a rational
basis in [13] has the potential to increase performance by im-
proving the model quality of the feedforward controller. How-
ever, by expanding the set of admissible basis functions, the
approach presented in [13] has no analytic solution.

Although iterative feedforward control with a rational basis
is promising for motion systems that exhibit flexible dynam-
ics, this parametrization i) results in an optimization problem
that has no analytic solution and is in general non-convex and
ii) stability of the feedforward controller is not guaranteed. In
this paper it is shown that both deficiencies can be eliminated
for systems executing a point-to-point motion. To this purpose,
a novel connection is established between iterative feedforward
control [8], [11] and input shaping [14], [15], and [16].

The main contribution of this paper is the introduction of
a joint input shaping and feedforward framework for motion
systems with pronounced flexible dynamical behavior that are
executing a point-to-point reference trajectory. The proposed
parametrization for the input shaper and feedforward i) re-
sults in an optimization problem with an analytic solution and
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Figure 1: Two degree-of-freedom control configuration.

ii) guarantees stability of the feedforward controller and input
shaper. This paper is an extended version of [17] and includes
extended experimental and simulation results, and an extensive
explanation and analysis.

This paper is organized as follows. In Section 2, the problem
definition is stated. Then, in Section 3, a joint input shaping and
feedforward framework is proposed. In Section 4, a simulation
example is provided that reveals the advantages of the proposed
framework compared to existing approaches. In Section 5, ex-
perimental results of the proposed approach are presented. Fi-
nally, conclusions are provided in Section 6.

2. PROBLEM DEFINITION

2.1. Joint input shaping and feedforward control goal

Consider the control configuration as depicted in Fig. 1. The
true unknown system P is assumed to be discrete-time, single-
input single-output, and linear time-invariant. The control con-
figuration consists of a given stabilizing feedback controller
C f b, input shaper Cy, and feedforward controller C f f . Further-
more, let r denote the known reference signal, ry the filtered ref-
erence signal, u f f the feedforward signal, u the input to P, y the
output signal, and ey the error signal. For the considered class
of systems, a sequence of finite time tasks is executed during
normal operation, where r is not necessarily the same for each
consecutive task.

For a system executing a point-to-point reference trajectory,
the goal of a joint input shaping and feedforward design is
to obtain zero-settling behavior at the desired endposition, as
shown in Fig. 2. Throughout this paper, r is designed as a 4th

order positioning trajectory, which satisfies constraints on, e.g.,
actuator forces, and acceleration and velocity profiles, see, e.g.,
[10]. As elaborated in Sect. 3, the presented assumption enables
the use of unconstrained optimization to determine Cy and C f f

in Fig. 1.
In this paper, performance of the joint input shaping and

feedforward design is defined with respect to the known ref-
erence r. That is, high performance is obtained if e = r − y
is small in the dwell period t ∈ [t2, t3]. The transfer function
from r to e is given by

e = r − y = (1 − S P(C f f + C f bCy))r, (1)

where S = (1 + PC f b)−1. It is emphasized that the adopted per-
formance definition considers the error between the known ref-
erence r and output y, and is therefore not necessarily identical
to ey = ry − y. To proceed, an optimization problem is defined
in the next section to iteratively update C f f and Cy based on
measured data.
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Figure 2: Point-to-point reference signal r. The goal is to obtain zero-
settling behavior at the desired endposition, i.e., all vibrations in the
system are compensated after completion of the motion.

2.2. Iterative input shaping and feedforward control
In iterative input shaping and feedforward control, measured

data from the jth task is exploited to update C j
y and C j

f f such
that e is minimized. The corresponding optimization problem
is given in Def. 1.

Definition 1. Given measured signals e j
y, u j and y j obtained

during the jth task of the closed-loop system in Fig. 1 with C j
f f

and C j
y implemented. Then, the feedforward controller and in-

put shaper in the ( j + 1)th task are given by

C j+1
f f = C j

f f + C∆
f f ,

C j+1
y = C j

y + C∆
y ,

(2)

where the update C∆
f f ,C

∆
y based on e j

y, u j and y j result from the
optimization problem

min
C∆

f f ,C
∆
y ∈C

V(C∆
f f ,C

∆
y ), (3)

with parametrization C and objective function V(C∆
f f ,C

∆
y ).

The objective function V(C∆
f f ,C

∆
y ) and parametrization C are

essential for the performance of the overall system. Typically,
the objective function

V2(C∆
f f ,C

∆
y ) =

∣∣∣∣∣∣ê j+1(C∆
f f ,C

∆
y )

∣∣∣∣∣∣2
2
, (4)

is employed [8], [17], where

ê j+1 = e j − S PC∆
f f r − S PC f bC∆

y r. (5)

To clarify (5), observe that the predicted error in the ( j + 1)th

task is given by

ê j+1 = (1 − S P(C j+1
f f + C f bC j+1

y ))r.

Substitute (2) and rearrange terms to obtain

ê j+1 = (1 − S P(C j
f f + C f bC j

y))r − S P(C∆
f f + C f bC∆

y )r.

Since the first term constitutes the error e j in the jth task, this
expression is equivalent to (5).

A suitable parametrization C is essential for the attainable
performance of the system in Fig. 1. In the next section, two
existing parametrizations are presented that only employ a feed-
forward controller C f f .
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Table 1: Feedforward and input shaper parametrizations for Cpol, Crat

and Ccom, with polynomial basis functions ψi and parameters θ.

Cpol Crat Ccom

C f f

na∑
i=1

ψiθi

na∑
i=1

ψiθi

na+nb∑
i=na+1

ψiθi

na∑
i=1

ψiθi

Cy 1 1 1 +

na+nb∑
i=na+1

ψiθi

2.3. Feedforward controller parametrization
In this section, C is defined for a polynomial and rational

basis. These parametrizations have in common that Cy = 1. For
this case, (1) is equal to

e = S (I − PC f f )r,

which reveals that e is equal to zero if C f f = P−1. Consider
the polynomial parametrization Cpol that encompasses common
parametrizations in feedforward control for motion systems, in-
cluding [10], [8] and [18].

Definition 2. The feedforward controller C f f parametrized in
terms of polynomial basis functions is defined as

Cpol =
{
C f f |C f f = A(q−1, θ), θ ∈ Rna

}
,

where

A(q−1, θ) =

na∑
i=1

ψi(q−1)θi,

with polynomial basis functions ψi(q−1).

Similar to [10], polynomial basis functions are adopted that
correspond to higher-order derivatives of r. For example, the
basis function for velocity and acceleration are given by, re-
spectively,

ψ1(q−1) =
1 − q−1

Ts
,

ψ2(q−1) =
1 − 2q−1 + q−2

T 2
s

.

The designed basis functions facilitate an intuitive physical in-
terpretation of the corresponding parameters θ. For example,
θ2, corresponding to the acceleration basis function ψ2, repre-
sents the mass of the system.

The parametrization Cpol in Def. 2 has two important advan-
tages. First, C f f is linear in θ. Hence, for the quadratic ob-
jective function (4), (3) has an analytic solution [11]. Second,
the polynomial basis of Cpol enforces stability of C f f , since all
poles are in the origin by definition.

However, by using polynomial basis functions, Cpol is only
capable of describing C f f = P−1 if P has a unit numerator. This
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Figure 3: In the proposed joint feedforward and input shaping tuning
procedure, C j+1

f f and C j+1
y are determined based on measured data from

the jth task by means of automated tuning.

approximation potentially leads to a significant performance
deterioration. This holds in particular for motion systems with
pronounced flexible dynamics, which in general violate the as-
sumption that P has a unit numerator [19]. To enable high per-
formance for such systems, consider the rational feedforward
model structure Crat, as introduced in [13, Definition 3].

Definition 3. The feedforward controller C f f parametrized in
terms of a rational basis is defined as

Crat =

{
C f f |C f f =

A(q−1, θ)
B(q−1, θ)

, θ ∈ Rna+nb

}
,

where

B(q−1, θ) =

na+nb∑
i=na+1

ψi(q−1)θi.

The parametrization Crat in Def. 3 allows C f f to contain both
poles and zeros. This enables the design of C f f such that C f f =

P−1 if P is a rational model.
The key caveat associated with Crat is that the optimization

problem in Def. 1 becomes nonlinear in θ. As a result, (3)
has in general no analytic solution. Typically, non-convex opti-
mization is required to determine C f f . In addition, stability of
C f f is not guaranteed, since C f f contains poles at arbitrary lo-
cations. Hence, internal stability of the overall system in Fig. 1
is not guaranteed.

2.4. Problem Definition

In view of the limitations of existing parametrizations for
feedforward controllers, this paper aims to investigate a joint
input shaping and feedforward control framework for motion
systems executing a point-to-point motion. The proposed joint
input shaping and feedforward approach is defined in the fol-
lowing goal.

Goal 1. Determine C f f and Cy such that V2(C∆
f f ,C

∆
y ) in (4) is

minimized during t ∈ [t2, t3] in Fig. 2, while resorting on an
optimization method which has an analytic solution.
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3. NOVEL COMBINATION OF INPUT SHAPING AND
FEEDFORWARD CONTROL

In this section, a joint input shaping and feedforward frame-
work is presented, which constitutes the main contribution of
this paper. As outlined in Sect. 2.2, iterative input shaping and
feedforward control is a methodology to update C f f and Cy af-
ter each task. First, a parametrization for Cy and C f f is pre-
sented that eliminates the deficiencies of the polynomial and
rational feedforward parametrizations in Sect. 2.3 for systems
executing a point-to-point motion trajectory. Second, a data-
driven method is proposed to determine C f f and Cy based on
measured data.

3.1. Input Shaper and Feedforward Parametrization

In this section, a parameterization is proposed for C f f and Cy.
Consider this parametrization Ccom given in the next definition.

Definition 4. The feedforward controller C f f and input shaper
Cy parametrized in terms of polynomial basis functions are de-
fined as

Ccom =

{
(C f f ,Cy)

∣∣∣∣∣∣ C f f = A(q−1, θ)
Cy = B(q−1, θ) , θ ∈ Rna+nb

}
,

where

A(q−1, θ) =

na∑
i=1

ψi(q−1)θi,

B(q−1, θ) = 1 +

na+nb∑
i=na+1

ψi(q−1)θi,

with parameters

θ =
[
θ1, θ2, . . . θna , θna+1, θna+2, . . . θna+nb

]T
∈ Rna+nb ,

and polynomial basis functions given by

Ψ =
[
ψ1, ψ2, . . . , ψna , ψna+1, ψna+2, . . . , ψna+nb

]
. (6)

An overview of the parametrizations Ccom, Cpol and Crat is
provided in Table 1. The following constraint is imposed on the
input shaper

Cy(q−1, θ)|q−1=1 = 1. (7)

This constraint enforces unit d.c. gain to avoid scaling of the
reference r. In addition, by observing that ry = Cyr it follows
that ry = r in t ∈ [t2 + N, t3], where N = nb − na is the order of
Cy, as illustrated in Fig. 4. This observation is a crucial attribute
of the optimization procedure presented in the next section.
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Figure 4: The shaped reference ry (black) is delayed with respect to
the reference r (grey) since ry = Cy(q−1, θ)r. However, the constraint
Cy(q−1, θ)|q−1=1 = 1 implies that ry = r in the dwell period [t2 + N, t3].

3.2. Approach to iterative feedforward and input shaping
As stated in Goal 1, high performance is obtained if the ob-

jective function V2(C∆
f f ,C

∆
y ) in (4) is minimal in t ∈ [t2, t3].

For the problem setting in this paper, an indirect approach is
pursued to achieve this goal. That is, for the optimization prob-
lem (3) as stated in Def. 1, the parametrization is given by Ccom
in Def. 4, while the objective function yields

Vy(C∆
f f ,C

∆
y ) =

∣∣∣∣∣∣∣∣ê j+1
y (C∆

f f ,C
∆
y )

∣∣∣∣∣∣∣∣2
2
,

with predicted error ê j+1
y in the ( j + 1)th iteration given by

ê j+1
y = e j

y + S (C∆
y − PC∆

f f )r. (8)

The motivation for the pursued indirect approach is twofold.
First, this approach exploits measured data from t ∈ [t1, t3]
to determine the parameters θ of Cy and C f f , which is clearly
beneficial for convergence of θ. Second, by observing that the
transfer from r to ey in Fig. 1 is given by

ey = S (Cy − PC f f )r,

it becomes clear that ey is equal to zero if C f f C−1
y = P−1. This

implies that the reference-induced contribution to ey is elim-
inated if the numerator and denominator of P are described
by Cy and C f f , respectively. This interpretation of the op-
timal Cy and C f f is in accordance with the expressions de-
rived in Sect. 2.3 for the polynomial and rational feedforward
parametrization.

It remains to be shown that the pursued optimization with
Vy(C∆

f f ,C
∆
y ) instead of V2(C∆

f f ,C
∆
y ) indeed attains Goal 1. To

illustrate the validity of the pursued approach, observe that the
constraint (7) as imposed on the input shaper in Sect. 3.1, im-
plies that V2(C∆

f f ,C
∆
y ) = Vy(C∆

f f ,C
∆
y ) during t ∈ [t2 + N, t3], as

depicted in Fig. 2. To illustrate this statement, observe that ê j+1

in (5) is equal to

ê j+1 = (1 − S P(C j+1
f f + C f bC j+1

y ))r, (9)
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and ê j+1
y in (8) is equivalent to

ê j+1
y = S (C j+1

y − PC j+1
f f )r. (10)

As presented in Fig. 4, (7) implies that C j+1
y r is equal to r in

t ∈ [t2 + N, t3]. Substitute this result in (9) and (10), rearrange
terms and evaluate for t ∈ [t2 + N, t3] to obtain

ê j+1 = (1 − T )r − S PC j+1
f f r,

with complementary sensitivity T = PC f bS , and

ê j+1
y = S (1 − PC j+1

f f )r.

Since 1 − T = S , it readily follows that ê j+1 and ê j+1
y are

equivalent in t ∈ [t2 + N, t3]. As a result, V2(C∆
f f ,C

∆
y ) =

Vy(C∆
f f ,C

∆
y ) in this time interval, motivating the proposed indi-

rect approach based on the optimization problem (3) with Ccom
and Vy(C∆

f f ,C
∆
y ).

The disadvantage of the pursued indirect approach is the dis-
crepancy between Vy and V2 in t ∈ [t2, t2 + N]. This dis-
crepancy potentially hampers the achievable performance dur-
ing the dwell period if N, the order of the polynomial Cy, is
large compared to the settling time of the system. However,
for motion systems with flexible dynamics, a limited number of
parameters is typically sufficient to compensate for the domi-
nant component of the reference-induced error. That is, C f f C−1

y

should only accurately represent P−1 in frequency ranges where
r has significant power content. For an 4th point-to-point refer-
ence trajectory, this is typically the low-frequency range [10],
[19]. As a result, the order N of Cy is limited, even for a sys-
tem P with multiple vibration modes, and the performance im-
provement in t ∈ [t2, t3] due to Cy significantly dominates the
performance loss in t ∈ [t2, t2 + N].

3.3. Optimization Algorithm

In this section, the optimization problem in Def. 1 with Ccom
and Vy(C∆

f f ,C
∆
y ) is reformulated as a linear least squares prob-

lem. It is shown that the parametrization Ccom proposed in
Def. 4 is crucial to obtain an analytic expression for θ.

The following results are required in a data-driven method to
determine C∆

f f and C f f
y in (3), i.e., without explicitly construct-

ing parametric or nonparametric models of closed-loop transfer
functions. Define C = (C f bC j

y + C j
f f ). Consider the transfer

function from r to y j in the jth task for the closed-loop system
in Fig. 3 given by

y j = S P(C f bC j
y + C j

f f )r. (11)

Since all transfer function are SISO, (11) is equivalent to

S Pr = (C f bC j
y + C j

f f )
−1y j = C−1y j. (12)

In addition, the transfer function from r to u in the jth task

u j = S (C f bC j
y + C j

f f )r,

is reformulated as

S r = (C f bC j
y + C j

f f )
−1u j = C−1u j. (13)

A proof follows along the same lines as in [8]. Expressions
(12) and (13) enable the estimation of θ in Def. 4 solely based
on measured data, as proposed in the following theorem.

Theorem 1. Given measured signals ey, u j and y j. Then, for
(C f f ,Cy) ∈ Ccom, minimization of (3) with respect to θ∆

θ̂∆ = arg min
θ∆

Vy(C∆
f f ,C

∆
y ), (14)

is equivalent to the least squares solution to

Φθ̂∆ = e j
y, (15)

with

Φ = ΨC−1
[

y j

u j

]
∈ RN×(na+nb).

Proof. Exploiting the commutative property of SISO systems
in (8) results in

ê j+1
y (θ∆) = e j

y + S rC∆
y − S PrC∆

f f , (16)

Substitution of (12) and (13) in (16) yields

ê j+1
y (θ∆) = e j

y + C∆
y C−1u j −C∆

f f C
−1y j,

= e j
y − Φθ∆.

Since C∆
f f and C∆

y are linear in θ∆ and Vy(C∆
f f ,C

∆
y ) is a positive-

definite function, θ̂∆ is the unique solution to

∂Vy(C∆
f f ,C

∆
y )

∂θ∆
|θ∆=θ̂∆ = 0,

resulting in the linear least squares problem formulated in (15).

Remark 1. In [17, Section 2.D], nonlinear optimization is used
to solve (14). Inspired by iterative feedback tuning (IFT) [20],
this procedure to determine C∆

f f and C∆
y relies on approxima-

tions of the Hessian and gradient of Vy(C∆
f f ,C

∆
y ), resulting in

an estimate of θ∆. However, Thm. 1 shows that the optimization
problem with respect to θ∆ has an analytic solution.

The least squares solution to (15) is equivalent to

θ̂∆ = (ΦT Φ)−1ΦT e j
y.

The following assumption ensures that θ̂∆ can be uniquely
determined.

Assumption 1. ΦT Φ is nonsingular.

Assumption 1 imposes a persistence of excitation condition
on r.
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Remark 2. Preview-based stable inversion [21] can be directly
employed to compute C−1y j and C−1u j if C−1 is unstable.

Based on θ̂∆ obtained by means of Thm. 1, C j+1
f f and C j+1

y in
Def. 1 result from the following theorem.

Theorem 2. For (C j
f f ,C

j
y), (C∆

f f ,C
∆
y ) ∈ Ccom with identical ba-

sis functions Ψ in (6), C j+1
f f and C j+1

y in (2) are given by

C j+1
f f =

na∑
i=1

ψiθ
j+1
i ,

C j+1
y = 1 +

na+nb∑
i=na+1

ψiθ
j+1
i ,

where θ j+1
i = θ

j
i + θ∆

i .

Proof. Since (C j
f f ,C

j
y), (C∆

f f ,C
∆
y ) ∈ Ccom have identical Ψ, C j+1

f f

and C j+1
y are given by

C j+1
f f = C j

f f + C∆
f f =

na∑
i=1

ψiθ
j
i +

na∑
i=1

ψiθ
∆
i ,

C j+1
y = C j

y + C∆
y = 1 +

na+nb∑
i=na+1

ψiθ
j
i +

na+nb∑
i=na+1

ψiθ
∆
i .

Since (C j
f f ,C

j
y) and (C∆

f f ,C
∆
y ) are linear in respectively θ j and

θ∆, superposition implies that

C j+1
f f =

na∑
i=1

ψi

(
θ

j
i + θ∆

i

)
=

na∑
i=1

ψiθ
j+1
i ,

C j+1
y = 1 +

na+nb∑
i=na+1

ψi

(
θ

j
i + θ∆

i

)
= 1 +

na+nb∑
i=na+1

ψiθ
j+1
i .

In this section, unconstrained optimization is employed to
determine C j+1

f f and C j+1
y . This optimization method is selected

to facilitate implementation of the approach in practice, since
it requires small computational requirements. However, the ab-
sence of constraints on, e.g., actuator forces, acceleration and
velocity forces, during optimization implies that erratic behav-
ior of ry and u f f can occur if C j+1

f f and C j+1
y are applied to the

system.
A heuristic approach is used to verify that C j+1

f f and C j+1
y can

be safely applied to the system in the next task. As presented in
Sect. 2.3, the basis functions ψ used in C f f and Cy correspond
to higher-order derivatives of r. As a result, the corresponding
parameters θ have a physical interpretation. This facilitates the
construction of an upper and lower bound for θ j+1 based on,
e.g., physical insight or simulation results of the system. If the
parameters θ j+1 are within these bounds, C j+1

f f and C j+1
y are ap-

plied to the system. Otherwise, θ j is not updated after the jth

task.
Finally, consider the following procedure to determine

(C j+1
f f ,C

j+1
y ) ∈ Ccom based on e j

y, u j and y j in the jth iteration,
which implements the results presented in this section.

m2

y

u m1

Figure 5: Schematic illustration of a two-mass spring damper setup.
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Figure 6: Bode diagram of a two-mass spring damper setup.

Procedure 1. Estimation of θ̂∆ in the jth iteration

1) Measure e j
y, u j and y j.

2) construct Φ = ΨC−1
[

y j u j
]T
∈ RN×(na+nb).

3) solve θ̂∆ = (ΦT Φ)−1ΦT e j
y.

4) Construct

C j+1
f f =

na∑
i=1

ψi

(
θ

j
i + θ̂∆

i

)
, C j+1

y = 1 +

na+nb∑
i=na+1

ψi

(
θ

j
i + θ̂∆

i

)
.

5) Verify if C j+1
f f and C j+1

y satisfy the constraints.

To summarize, in this section a novel joint input shaping and
feedforward control framework is developed for systems exe-
cuting a point-to-point motion. It is emphasized that the ap-
proach in [8] based on polynomial basis functions (Cpol) is im-
mediately recovered as a special case of the developed frame-
work for Cy = 1. That is, the proposed model structure is a
generalization of Cpol, thereby eliminating the requirement that
P has a unit numerator. Compared to a rational feedforward
model structure Crat, the framework presented in this paper i)
has an analytic solution and ii) internal stability of the overall
system is guaranteed. These two advantages are a result of the
polynomial basis for both Cy and C f f , as proposed in Def. 4.

4. SIMULATION EXAMPLE

In this section, a simulation example is provided to illustrate
the joint input shaping and feedforward approach Ccom pre-
sented in Sect. 3. It is shown that a significant performance
enhancement is obtained with respect to Cpol in Sect. 2.3 for
systems with pronounced flexible dynamics.
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Figure 7: Reference signal applied to the closed loop system with
(P,C f b). The goal of the joint input shaping and feedforward design is
to minimize e during the dwell period.
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Figure 8: The error e during the dwell period visually confirms that
the settling time for Ccom (green) is significantly smaller than for Cpol

(red).
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Figure 9: The objective function V2(C f f ,Cy) corresponding to Ccom

(dashed green) is significantly smaller than for Cpol (red). This con-
firms that the proposed approach results in performance enhancement.
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(b) P (black) and CyC−1
f f (red dashed).

Figure 10: C f f ∈ Cpol - The system P is not exactly described by C−1
f f ,

hampering performance of the system during the dwell period.

Consider a two-mass spring damper system as schematically
depicted in Fig. 5. The dynamical behavior of this system con-
sist of rigid body and flexible dynamics, see Fig. 6. The corre-
sponding discrete-time transfer function is given by

P(z) = 9.97 × 10−9 (z + 1)(z2 − 1.968z + 0.9996)
(z − 1)2(z2 − 1.934z + 0.9966)

. (17)

The sampling time is equal to Ts = 1 × 10−4 [s]. Further-
more, the feedback controller, designed by means of manual
loop-shaping, is given by

C f b(z) = 1 × 105 (z − 0.99)(z − 0.9833)(z2 − 1.924z + 0.987)
(z − 1)(z − 0.86)2(z2 − 1.823z + 0.8819)

,

and results in a bandwidth of 80 Hz, defined as the frequency
where PC f b = 1. An output disturbance v modeled as v = Hε
is added to the closed-loop system, where

H(z) = 0.7656
(z − 1)2

(z2 − 1.475z + 0.5869)
,

and ε is zero mean white noise with standard deviation 1×10−7.
The system is excited by a 4rd order point-to-point reference r,
as depicted in Fig. 7.
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(b) P (black) and CyC−1
f f (green dashed).

Figure 11: (Cy,C f f ) ∈ Ccom: P is exactly described by CyC−1
f f , resulting

in superior performance in dwell period.

The input shaper Cy and feedforward controller C f f are
parametrized as 4th order filters given by

Cy(q−1, θ) = 1 + ψ1θ1 + ψ2θ2 + ψ3θ3 + ψ4θ4,

C f f (q−1, θ) = ψ5θ5 + ψ6θ6 + ψ7θ7,

with basis functions

ψ1(q−1) =
1 − q−1

Ts
,

ψ2(q−1) = ψ5(q−1) =
1 − 2q−1 + q−2

T 2
s

,

ψ3(q−1) = ψ6(q−1) =
1 − 3q−1 + 3q−2 − q−3

T 3
s

,

ψ4(q−1) = ψ7(q−1) =
1 − 4q−1 + 6q−2 − 4q−3 + q−4

T 4
s

.

The initial values of the parameters θ yield

θinit =
[
0, 0, 0, 0, 9 × 10−1, 0, 0

]T
,

i.e., only the acceleration term in C f f is initialized.
The error e during the dwell period as depicted in Fig. 8 illus-

trates that the settling time for (Cy,C f f ) ∈ Ccom is significantly
smaller than for C f f ∈ Cpol. This is confirmed by the objective
function V2(C f f ,Cy) as depicted in Fig. 9, which shows that
the two-norm of e in the dwell period is significantly smaller
for Ccom than for Cpol. Hence, the simulation results confirm
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Figure 12: The objective function V2(C f f ,Cy) for Ccom (dashed green),
where the dynamical behavior of P changes after the second task. As
a result, performance deteriorates in the third task. By exploiting mea-
sured data from the third task, C f f and Cy are updated to obtain supe-
rior performance in the fourth and fifth task.

that the performance of the system is significantly enhanced by
means of the model structure Ccom compared to Cpol.

Consider the visualization of Cpol and Ccom in Fig. 10 and
Fig. 11, respectively. On the one hand, as depicted in Fig. 10,
a feedforward parametrization Cpol is only capable of capturing
the dynamical behavior of P in the frequency range up to ap-
proximately 80 Hz. This implies that it is not possible to com-
pensate for the excitation of flexible dynamics by the setpoint
through this parametrization of Cy and C f f . This is explained
by observing that CyC−1

f f for Cpol is only capable of describing
a system P with a unit numerator.

On the other hand, the proposed joint input shaping and feed-
forward approach is capable of describing the dynamical behav-
ior of flexible dynamics, as depicted in Fig. 11. This clearly il-
lustrates the advantages of the proposed approach with respect
to conventional approaches for a system P described by a ra-
tional model, such as motion systems exhibiting flexible dy-
namics. It is emphasized that for C f f ∈ Crat, a similar perfor-
mance can be obtained as with Ccom. However, the proposed
approach has significant advantages for systems executing a
point-to-point motion reference, as presented in Sect. 3.

Finally, it is shown that variations in the dynamical behavior
of P can be effectively compensated by means of the proposed
iterative procedure. To this purpose, assume that between the
second and third task, P(z) as given in (17) is replaced by the
perturbed system

P∆(z) = 9.97 × 10−9 (z + 1)(z2 − 1.968z + 0.9978)
(z − 1)2(z2 − 1.934z + 0.9917)

.

The objective function V2(C f f ,Cy) as depicted in Fig. 12 shows
a significant performance deterioration in the third task. This
is explained by observing that CyC−1

f f in the third task is not
equal to P∆. By exploiting measured data from the third task,
Cy and C f f in the fourth task are adapted such that CyC−1

f f = P∆

in the fourth task. Hence, variations in the dynamics of P can
be effectively compensated by means of iteratively updating Cy

and C f f based on measured data.
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(a) C f f (black) and Cy (blue).
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(b) P (black), CyC−1
f f (green dashed) and power spectral density of r.

Figure 14: The system P is accurately described by CyC−1
f f in f ∈

[0, 120] Hz. As confirmed by the power spectral density (PSD) of
r, this is the frequency range with the dominant contribution to the
reference-induced error.

5. EXPERIMENTAL RESULTS OF PROPOSED AP-
PROACH

5.1. Experimental Setup

In this section, the combined input shaping and feedforward
control approach proposed in this paper is confronted with a
prototype industrial motion system. The experimental setup
in Fig. 13 is controlled in all six motion degrees of freedom
(DOF) (i.e., three rotations and three translations). To this pur-
pose, the system is equipped with six actuators to provide the
required force. The actuators consist of linear motors with
an added position offset such that an actuator can also gen-
erate a force in the perpendicular direction. Gravity compen-
sation magnets have been added to reduce the required static
force. Laser interferometers enable nanometer resolution po-
sition measurements in the six motion degrees of freedom. A
feedback controller C f b(z) is determined by means of sequential
loopshaping. All experiments are performed with a sampling
time Ts = 2 × 10−4 [s].
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Figure 15: Point-to-point reference r with a stroke of 18 [mm] and
acceleration of 1 [m/s2].
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Figure 16: The contribution to u of u f b (black), u f f (blue) and the offset
(dashed green) indicates that the feedforward contribution, consisting
of the output of C f f (z, θ) and the position dependent static offset, is
significantly larger than the contribution of the feedback controller.

5.2. Experimental Results
Even though the experimental setup is inherently multivari-

able, the proposed approach is only applied to the long stroke
direction x. For the feedback controller, a sequential design is
pursued for this system. To this purpose, an equivalent system
Peq is determined for the x-direction after closing the control
loops for the remaining 5 DOFs. This equivalent system Peq is
given by

Peq(z) = Pxx − PxyCyy(I + PyyCyy)−1Pyx,

as seen by the controller Cxx, and is depicted in Fig. 14. The
controller Cxx is designed by means of manual loop-shaping
and attains a bandwidth of 120 Hz.

The 4th order reference trajectory r depicted in Fig. 15 is
used to determine C f f and Cy by means of Proc. 1. As shown
in Fig. 16, a position dependent static offset is applied to the
system. This offset is used to compensate for nonlinear and
time-varying system behavior, in order to obtain a linear time-
invariant system P for feedforward optimization. The estimated
4th order C f f and 4th order Cy as depicted in Fig. 14a accurately
describe P in f ∈ [0, 120] Hz, as depicted in Fig. 14b. For
higher frequencies, r is not sufficiently exciting to accurately
represent the system in this frequency range.

In Fig. 16, the plant input is shown. The feedback controller
contribution (u f b) is approximately zero compared to the feed-
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Figure 17: Optimal performance with a 4th order C f f and 4th order Cy

is obtained after executing two iterations on the experimental setup.
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Figure 18: The standard deviation σ of the error ey corresponding to
the estimated (C f f ,Cy) ∈ Ccom is equal to σ = 2.3 [nm] during the two
dwell periods.

forward part (u f f ). This shows that the feedforward effectively
compensates for the reference-induced error. In Fig. 17, it is
shown that the optimal parameters θ for the 4th order C f f and
Cy are obtained based on measured data from two tasks. This il-
lustrates that the presented optimization experiment is efficient.

Comparing Fig. 18 and Fig. 19 shows that the error ey in the
dwell period, obtained by means of the proposed combined in-
put shaping and feedforward control methodology approaches
the stand-still error depicted in Fig. 19. This illustrates that the
proposed approach effectively compensates for the reference-
induced error e after completion of a point-to-point motion. In-
deed, a comparison between Ccom, Cpol and the case without
feedforward and input shaping as provided in Table 2 confirms
the benefits of the proposed approach for the considered exper-
imental setup.

6. CONCLUSIONS

In this paper, a new approach for joint input shaping and
feedforward control is presented and verified i) in a simulation
study and ii) by means of an experimental confrontation with a

Table 2: Standard deviation σ in the dwell period after convergence of
the optimization procedure for Ccom, Cpol and without feedforward and
input shaping shows that the parametrization Ccom results in superior
performance.

Ccom Cpol C f b

σ [nm] 2.3 3.6 37
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Figure 19: The error signal during stand-still is equal to σ = 1.7 [nm].

prototype industrial motion system. The proposed model struc-
ture is a generalization of a polynomial model structure, thereby
removing the restrictive condition that P has a unit numerator. It
is shown that the proposed joint input shaping and feedforward
model structure results in a significant performance improve-
ment compared to pre-existing approaches for systems execut-
ing a point-to-point motion. Compared to a rational feedfor-
ward model structure, the model structure presented in this pa-
per has two key advantages: i) there exist an analytic solution
and ii) internal stability of the overall system is guaranteed.

In [11] a refinement is presented for iterative feedforward
control algorithms that results in significantly enhanced accu-
racy and efficiency for feedforward controllers with polyno-
mial basis functions. Future research focuses on an extension of
the results in [11] and [22] to the iterative procedure proposed
in this paper, multivariable generalizations, inferential control
[23] and systems with position-dependent dynamics [24]. Fur-
thermore, a thorough analysis of intersample behavior as in [25]
is advised.

References

[1] Clayton GM, Tien S, Leang KK, Zou Q, Devasia S. A review of feedfor-
ward control approaches in nanopositioning for high-speed SPM. Journal
of Dynamic Systems, Measurement, and Control 2009;131(6):0611011 –
061101–19.

[2] Butterworth J, Pao L, Abramovitch D. Analysis and comparison of
three discrete-time feedforward model-inverse control techniques for
nonminimum-phase systems. Mechatronics 2012;22:577–87.

[3] Rigney BP, Pao LY, Lawrence DA. Nonminimum phase dynamic inver-
sion for settle time applications. IEEE Trans Control Systems Technology
2009;17(5):989–1005.

[4] Bristow D, Tharayil M, Alleyne A. A survey of iterative learning control.
IEEE Control Systems Magazine 2006;26(3):96–114.

[5] Zhong H, Pao LY, de Callafon RA. Feedforward control for disturbance
rejection: Model matching and other methods. In: Proceedings of the
Chinese Conference on Decision and Control, Taiyuan, China. 2012, p.
3525–33.

[6] Devasia S. Should model-based inverse inputs be used as feedforward
under plant uncertainty? IEEE Transactions on Automatic Control
2002;47(11):1865–71.

[7] van de Wijdeven J, Bosgra O. Using basis functions in iterative learn-
ing control: analysis and design theory. International Journal of Control
2010;83(4):661–75.

[8] van der Meulen S, Tousain R, Bosgra O. Fixed structure feedforward
controller design exploiting iterative trials: Application to a wafer stage
and a desktop printer. Journal of Dynamic Systems, Measurement, and
Control 2008;130(5):0510061–05100616.

[9] Stearns H, Yu S, Fine B, Mishra S, Tomizuka M. A comparative study
of feedforward tuning methods for wafer scanning systems. In: ASME
Dynamic Systems and Control Conference, Michigan, USA. 2008,.

10



[10] Lambrechts P, Boerlage M, Steinbuch M. Trajectory planning and feed-
forward design for electromechanical motion systems. Control Engineer-
ing Practice 2005;13:145–57.

[11] Boeren F, Oomen T. Iterative feedforward control: a closed-loop identi-
fication problem and a solution. In: Proceedings of the 52st Conference
on Decision and Control, Firenze, Italy. 2013, p. 6694–9.

[12] Oomen T, van Herpen R, Quist S, van de Wal M, Bosgra O, Steinbuch M.
Connecting system identification and robust control for next-generation
motion control of a wafer stage. IEEE Transactions on Control Systems
Technology 2014;22(1):102–18.

[13] Bolder J, Oomen T, Steinbuch M. Exploiting rational basis functions in
iterative learning control. In: Proceedings of the 52st IEEE Conference
on Decision and Control, Firenze, Italy. 2013,.

[14] Singhose W. Command shaping for flexible systems: A review of the first
50 years. International Journal of Precision Engineering and Manufactur-
ing 2009;10(4):158–68.

[15] Boettcher U, Fetzer D, Li H, de Callafon RA, Talke FE. Reference
signal shaping for closed-loop systems with application to seeking in
hard disk drives. IEEE Transactions on Control Systems Technology
2012;20(2):335–45.

[16] Cutforth CF, Pao LY. Adaptive input shaping for maneuvering flexible
structures. Automatica 2004;40(4):685–93.

[17] Bruijnen D, van Dijk N. Combined input shaping and feedforward con-
trol for flexible motion systems. In: Proceedings of the 2012 American
Control Conference, Montréal, Canada. 2012,.
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