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Abstract

Certain control applications require that performance variables are explicitly distinguished from measured variables. The performance
variables are not available for real-time feedback. Instead, they are often available after a task. This enables the application of batch-to-
batch control strategies such as Iterative Learning Control (ILC) to the performance variables. The aim of this paper is first to show that
the pre-existing ILC controllers may not be directly implementable in this setting, and second to develop a new approach that enables
the use of different variables for feedback and batch-to-batch control. The analysis reveals that by using pre-existing ILC methods, the
ILC and feedback controllers may not be stable in an inferential setting. Therefore, the complete closed-loop system is cast in a 2D
framework to analyze stability. Several solution strategies are outlined. The analysis is illustrated through an application example in a
printing system. Finally, the developed theory also leads to new results for traditional ILC algorithms in the common situation where the
feedback controller contains a pure integrator.

Key words: Iterative learning control, inferential control, 2D system, stability along the pass, limit profile

1 Introduction

Increasing performance requirements on systems demand an
explicit distinction between measured variables and perfor-
mance variables. Performance variables may not be avail-
able for real-time feedback control due to computational
constraints, physical limitations in sensor placement, delays
in acquiring measurements, etc. Examples include heat ex-
changers [1] and motion systems [2].

In many cases, the performance variables are available off-
line. For instance, when the final product is inspected af-
terwards, the ‘true’ performance is revealed. This enables
batch-to-batch control using performance variables. A com-
mon batch-to-batch control strategy is Iterative Learning
Control (ILC) [3]. In ILC, the control signal is updated trial-
to-trial using measurement data of previous trials to improve
performance. Traditionally, ILC is applied to the measured
variables that are also available for the feedback controller.
This classical approach is well-established with many results
on the convergence and robustness properties [4,5].

A direct combination of ILC acting on the performance vari-
ables while the feedback controller uses different real-time
measured variables may lead to potentially hazardous situ-
ations. Indeed, the feedback controller aims to regulate the
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measured variables while the ILC regulates the performance
variables. This may lead to a conflict in case a parallel [3]
ILC-feedback control structure is used. In [6], initial indica-
tions of such a conflict are already reported. In [7], a related
and specific approach is presented to use observers to infer
the performance variables from the real-time measurements
instead of a direct performance measurement. The main idea
is that distinguishing between performance and measured
variables can potentially fully exploit the use of ILC. The
use of performance variables for ILC and different real-time
measured variables for feedback control is referred to as in-
ferential ILC in the present paper.

Although ILC is potentially promising for the mentioned
inferential control applications, the direct application of pre-
existing ILC design methods may not lead to satisfactory
performance and stability properties. In fact, in this paper
it is shown through a formal analysis that using traditional
ILC design approaches such as [3,4] in the inferential ILC
situation can lead to implementations that are unstable.

The main result of this paper is a framework for inferential
ILC, including a detailed analysis and new learning control
approaches. To facilitate the analysis, the time-trial dynam-
ics of a common ILC algorithm with dynamic learning filters
is cast into a 2D Framework using discrete Linear Repet-
itive Processes (dLRP’s) [8]. The motivation for using 2D
systems stems from the observation that the unstable behav-
ior remains undetected in traditional approaches, e.g., as the
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lifted/supervector approach in [4]. Stability conditions are
developed using 2D systems theory. Solutions are presented
and analyzed using these stability conditions. The analysis
is illustrated through an application example in printing sys-
tems. In addition, it can be shown that the related approach in
[7] can be analyzed in the developed framework as a special
case. Finally, the developed theory also leads to new results
for the traditional ILC case where the performance variables
are equal to the measured variables in the common situation
where the feedback controller contains an integrator.

Notation Z∗ (Z+) denotes the set of positive (non-negative)
integers. Discrete-time is denoted with p ∈ Z, k ∈ Z is
the trial index. For A ∈ Cn×n, ρ(A) = max1≤i≤n |λi|,
with λ = {λ0, λ1, . . . , λn} the spectrum of A. Systems are

discrete-time, for a systemG,G :=


A

G BG

CG DG


 denotes a state-

space representation with state xG, which is often assumed
minimal. The real-rational transfer function for G is given
by G(z) = CG(zI − AG)−1 + DG, with z a complex in-
determinate and G ∈ Rny×nu . Over a finite-time interval
0 ≤ p < α, α ∈ Z+, the input-output behavior of G can
be denoted as ȳ = Ḡū with Ḡ ∈ Rαny×αnu a Toeplitz
matrix that contains the impulse response coefficients h(p),
where h(p) = CG(AG)

p−1
BG for p > 0 and h(0) = DG,

with h(p) ∈ Rny×nu [4]. The input ū ∈ Rαnu and output
ȳ ∈ Rαny . Single-input single-output systems are assumed
throughout to facilitate the presentation. The extension to
multivariable systems is conceptually straightforward and
many of the results in Section 3 and Section 4 directly apply.

2 Problem definition and application motivation

First, the control setup is motivated from an application per-
spective. Next, the considered problem is presented.

2.1 Application motivation and control setup

Printing systems are an important example where perfor-
mance variables cannot be measured directly in real-time.
The paper positioning drive of a printer, see Fig. 1, is tradi-
tionally controlled through feedback using inexpensive en-
coder position measurements. High tracking accuracy using
the encoder measurement y does not imply good printing
performance z due to mechanical deformations in the drive.

Recently, a scanner has been mounted in the printhead,
which enables line-by-line measurements of the printing per-
formance z [9]. This direct measurement of the performance
is not available to real-time feedback, but can directly be
used for batch-to-batch control strategies including Iterative
Learning Control (ILC). This leads to the situation where the
variables for feedback control y are not equal to variables
for ILC z, see Fig. 2. Here,

[
zk yk

]T
= Puk. System P has

two outputs: the performance variable zk and the measured
variable yk. The input to the system equals uk = uCk + fk.

printhead
paper

y

motor

u

rollers

worm drive

z

scanner

encoder

Fig. 1. Side-view of the positioning drive in a printer. The paper
position z is controlled using the motor. The feedback controller
uses real-time encoder measurements y. The performance z is
measured line-by-line using the scanner.
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Fig. 2. Traditional feedback control setup.

Here, uCk (r, yk) is the feedback control signal. In traditional
printing systems, it is assumed that yk ≈ zk, in which case
a feedback controller is implemented as uCk = C(r − yk),
with C assumed fixed and designed such that the closed-
loop system is internally stable. In the setting considered in
the present paper, the feedforward signal fk results form a
batch-to-batch control algorithm. For instance, standard ILC
approaches [3] consider an algorithm of the form

fk+1 = Q(fk + Lezk), (1)

where ezk = r − zk, L is a learning filter, Q is a robustness
filter, and k is the trial index. Appropriate substitution of
ezk in (1) using P = [P z P y]

T
, zk = P zuk, uk = Ceyk +

fk, e
y
k = r− yk, and yk = P yuk leads to iteration domain

dynamics fk+1 = Q (1− LJ) fk + L (1− JC) r, where

J =
P z

1 + CP y
. (2)

Next, a simplified inferential ILC example is presented.

2.2 Illustrative example

In the following example, it is shown that using the tradi-
tional ILC approach of [3] in the batch-to-batch inferential
setting where yk 6= zk can lead to an undesirable situation.

Example 1 Let P =

[
P z

P y

]
=

[
1

3

]
and C =


 1 1

0.5 0


.

Thus, P is a static system and C an I-controller. The stable
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closed-loop system is given by

[
zk

yk

]
=




−0.5 1 3

−0.5

−1.5

0 1

0 3




[
r

fk

]
.

Next, an ILC algorithm (1) is designed following [4,3], with
Q = 1 and L such that the trial-to-trial dynamics converge.
The converged command signal f∞ is given by

f∞ = lim
k→∞

fk+1 = (1 + CP y − CP z)P z−1

r, (3)

and the resulting limit error ez∞ = 0. Next, note that a
minimal state-space realization for (3) and ez∞ is given by

[
f∞

ez∞

]
=




1 −2

−0.5

0

1

0




︸ ︷︷ ︸
F

r. (4)

In this case, a bounded nonzero r yields ez∞ = 0, however,
f∞ may be unbounded due to a pole z = 1 in F (z).

This example reveals that a hazardous situation occurs in
case P y 6= P z , although a typical ILC approach is followed,
i.e., a stable closed loop system and a convergent ILC algo-
rithm. The feedback controller aims to regulate eyk and the
ILC regulates ezk. If ezk = 0 then eyk 6= 0 due to P z 6= P y

and a nonzero r. The integrator in C integrates eyk, yielding
a unbounded growing signal. The ILC compensates this be-
havior by generating an opposite signal, see (3) and (4) that
yields ezk = 0. The latter example is analyzed in more detail
using the developed framework in Section 4 and Section 5.

A main consequence in practice includes unbounded system
input signals after minimal changes in system dynamics or
the feedback controller. Essentially, if any of the systems in
the control loop are changed, or fail, the input to the sys-
tem may be unbounded as well, with potentially disastrous
consequences.

The assumption Q = 1 is to facilitate the presentation, the
analysis and conclusions are also applicable to cases with
Q-filtering.

2.3 Problem formulation and contributions

In this paper, inferential ILC is investigated: ILC using off-
line measurements of the performance variables z while
feedback uses real-time measurements y. The problem ad-
dressed in this paper is the formal stability analysis of this
situation. This paper includes the following contributions,
which are sequentially addressed in Section 2-6.

(1) Illustration of stability problems in inferential ILC.

fk

P
yk

zk ezk

−
r

C
eyk uCk −

LQ
lk

ILC

uk

fk+1

FB

Fig. 3. Inferential control setup with traditional feedback control
and the ILC algorithm implemented.

(2) Analysis and solutions using a 2D-systems approach.
(3) Presentation of new insights in the classical y = z ILC

case when C includes integral action.
(4) The results are supported with numerical examples.

Preliminary research related to contributions 1 and 2 ap-
peared in [10,11]. The present paper extends these initial
findings with theory, explanations, examples, and contribu-
tions 3 and 4.

3 Linear repetitive process framework for inferential
ILC

Example 1 revealed that standard ILC designs can lead to
unbounded control signals in the inferential y 6= z setting.
Standard analyses using the lifted/supervector approach, see
e.g. [4,3], do not reveal the aspect of unbounded control
signals as shown in the example in Section 2.2. In this paper,
an extended analysis with y 6= z is performed by casting the
ILC algorithm into a discrete linear repetitive process, see
[8] and [12] for a definition.

State-space representations for the system P and feedback
controller C are given by

P =




AP BP

CPz

CPy

DPz

DPy


 , and C =


A

C BC

CC 0


 . (5)

The output state-space matrices for P are partitioned accord-
ing to the dimensions of zk and yk. The strictly properness
of C guarantees well-posedness and facilitates the presen-
tation. In addition, state-space representations for L and Q
in (1) are given by

Q =


A

Q BQ

CQ DQ


 , and L =


A

L BL

CL DL


 . (6)

Figure 3 shows the inferential ILC setup with traditional
feedback control implemented. First consider the general
form of a dLRP in Definition 2.
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Definition 2 A discrete linear repetitive process is given by

Xk+1(p+ 1) = AXk+1(p) + BUk+1(p) + B0Yk(p),

Yk+1(p) = CXk+1(p) +DUk+1(p) +D0Yk(p).
(7)

Discrete-time is denoted by p ∈ Z, with 0 ≤ p < α, α ∈ Z+.
The pass index is denoted as k ∈ Z∗. Here Xk(p) is the
state, Yk(p) is the pass-profile, and Uk(p) the input.

To cast the ILC structure in Fig. 3 into (7), let Xk+1(p) =[
xPk+1(p) xCk+1(p) xLk+1(p) xQk+1(p)

]T
, in accordance

with (5) and (6), in addition, Yk(p) = fk+1(p). The input of
the dLRP is the reference r, hence Uk+1(p) = r(p) which
is pass-invariant. The boundary conditions Xk+1(0) and
Y0(p) are assumed constant throughout, which is a stan-
dard assumption in ILC [3]. The matrices A,B,B0, C,D,
and D0 follow using (5), (6) and interconnection relations
ezk = r − zk and uk = C(r − yk) + fk, and are given by

A =




AP BPCC 0 0

−BCCPy AC −BCDPyCC 0 0

−BLCPz −BLDPzCC AL 0

−BQDLCPz −BQDLDPzCC BQCL AQ



B =




0

BC

BL

BQDL



B0 =




BP

−BCDPy

−BLDPz

BQ(I −DLDPz)




C =
[
−DQDLCPz −DQDLDPzCC DQCL CQ

]
D =

[
DQDL

]
D0 =

[
DQ(I −DLDPz)

]
.

(8)

In the next section, a formal 2D stability analysis of infer-
ential ILC is presented using the dLRP in (7) and (8).

4 Stability aspects

The aim in this section is to investigate f∞ in (3) and the
stability aspects of (1) in the inferential setting. Relevant
stability notions for dLRPs are connected with classical ILC
convergence conditions. These connections form the basis
for solutions and also expose how the unstable behavior
remains undetected in traditional ILC design approaches.

4.1 Asymptotic stability and analysis of the limit profile

Asymptotic stability for dLRPs is a common definition of
stability and is investigated first. Assume a pass-invariant
input Uk+1 = U∞ in (7) as is the case in the present ILC
setting with U∞ = r(p). Essentially, asymptotic stability
guarantees that the pass profile Yk converges to a limit pro-
file Y∞ = limk→∞ Yk when a pass-invariant input U∞ is
applied for a finite pass-length α. Consider the following
lemma.

Lemma 3 (Asymptotic stability) The dLRP in (7) is
asymptotically stable if and only if ρ(D0) < 1.

Proof See [8, Corollary 2.1.3] or [12, Theorem 3.3.4].

The condition in Lemma 3 is directly applicable to the ILC
algorithm (1), leading to the following result.

Theorem 4 The dLRP in (7), with matrices (8) is asymp-
totically stable if and only if ρ(Q̄(I − L̄J̄)) < 1, with Q̄, L̄,
and J̄ the Toeplitz matrix representations of Q, L, and J in
(6) and (2).

Proof From (5) and (8) it follows that D0 is the direct
feedthrough of Q(1 − LJ). Next, Q̄(I − L̄J̄) is lower-
triangular with D0 on the diagonal since Q, L and J are
causal. Hence, ρ(Q̄(I − L̄J̄)) = ρ(D0) follows directly.

Theorem 4 shows that asymptotic stability for dLRPs is
identical to the finite-time convergence condition ρ(Q̄(1 −
L̄J̄)) < 1 developed in [4, Theorem 1].

The following results are essential to show that the resulting
limit profile f∞ may be unbounded, even though ρ(Q̄(1 −
L̄J̄)) < 1 and C being an internally stabilizing controller.

Lemma 5 (Limit profile) Given an asymptotically stable
dLRP, a pass-invariant input sequence Uk+1 = Uk = U∞,
and boundary conditions Xk+1(0) = 0,Y0(p) = 0. Then,
the state-space system that generates the limit profile Y∞ =
limk→∞ Yk for the inferential ILC system (7) is given by

Y∞ =


A∞ B∞
C∞ D∞


U∞ (9)

A∞ =
[
A+ B0(I −D0)−1C

]
, C∞ = (I −D0)−1C

B∞ =
[
B + B0(I −D0)−1D

]
, D∞ = (I −D0)−1D

Proof Following the lines in [12, Section 3.1, pp. 112], [8,
Section 2.1, pp. 50], and computing the steady-state value
in pass-to-pass direction using k = k + 1 :=∞ in (7) and
rearranging yields (9).

Theorem 6 Let Q = 1 and ρ(Q̄(I − L̄J̄)) < 1. Then, a
state-space realization for f∞ in (3) is given by

f∞=




AP−BPDPz−1
CPz 0

−BC(CPy−DPyDPz−1
CPz) AC

BPDPz−1

BC(I−DPyDPz−1
)

−DPz−1
CPz −CC DPz−1


 r.

(10)

Proof The state-space representation for the limit profile
f∞ follows by substituting DQ = 1, AQ = ∅, BQ = ∅ and
CQ = ∅ in (8), and the latter in (9) in Lemma 5.

Consider the system matrix of the state-space system that
generates f∞ in (10). It shows that this matrix has a lower-
triangular structure, hence the eigenvalues of this matrix
include the eigenvalues of AC .

Example revisited - 1 In example 1 λ0(AC) = 1. Thus
ρ(A∞) = 1, resulting in an unstable limit system.

A stronger notion of stability is necessary to guarantee
ρ(A∞) < 1 in Lemma 5. Indeed, this is also recognized in

4



[8, Chapter 9, pp. 369] where ILC and feedback are jointly
synthesized for the y = z situation. Therefore, the notion
of stability along the pass is introduced next.

4.2 Stability along the pass for inferential ILC

The following definition for stability along the pass is
adopted from [8, Definition 2.2.1, pp. 57].

Definition 7 The dLRP in (7) is called stable along the pass
if ∃M∞ > 0 and γ∞ ∈ (0, 1), independent of α, such that

||Yk−Y∞|| ≤M∞(γ∞)kΓ∞(Y0,U∞, γ∞), ∀k ≥ 0. (11)

Here, Γ∞ a constant that depends on the initial pass profile
Y0, U∞, γ∞, and matrices A,B, C, and D.

The essential difference with asymptotic stability is that con-
stants M∞ and γ∞ are independent of α, and that (11) is
also valid for the case α → ∞. An expression for Γ∞ is
given in [8, Definition 2.2.1, pp. 57]. A test for stability
along the pass for inferential ILC system (7) is given next
as an auxiliary result, which is used later on. The effect of
Definition 7 is clarified directly after.

Lemma 8 (Stability along the pass) Given the dLRP (7),
where {A,B0} is controllable and {C,A} is observable.
Then, (7) is stable along the pass if and only if the following
three conditions hold:

(1) ρ(D0) < 1,
(2) ρ(A) < 1,
(3) ρ(G(z)) < 1,∀|z| = 1, z ∈ C,

with G(z) = C(zI −A)−1B0 +D0.

Proof See Appendix A.

Theorem 9 If a dLRP is stable along the pass, then
ρ(A∞) < 1 in (9).

Proof See Appendix A.

The proof of Lemma 8 in Appendix A reveals that if condi-
tions 2 and 3 hold then condition 1 holds automatically: if
the dLRP is stable along the pass then it is also asymptoti-
cally stable. Furthermore, Theorem 9 reveals that if a dLRP
is stable along the pass, then ρ(A∞) < 1. Hence, stability
along the pass indeed leads to a stable limit profile. If al-
gorithm (1) is stable along the pass then the stability issues
that are present in Example 1 in Section 2.2 cannot occur.

Remark 1 Several stability notions for dLRPs exist that
also ensure ρ(A∞) < 1, see e.g., [13,14]. The results in the
present paper can directly be extended to this case.

Conditions for stability long the pass of inferential ILC al-
gorithm (1) are presented in the following theorem.

Theorem 10 Given is dLRP (7) with matricesA,B,B0, C,D,
and D0 in (8). Suppose that {A,B0} is controllable and
{C,A} is observable. Then, (7) is stable along the pass if
and only if the following conditions hold

(1) ρ(Q̄(I − L̄J̄)) < 1,
(2) (a) ρ(ACP ) < 1,

(b) ρ(AL) < 1,
(c) ρ(AQ) < 1,

(3) ρ (Q(z)(I − L(z)J(z))) < 1,∀|z| = 1, z ∈ C.

with

J(z) =
P z(z)

1 + C(z)P y(z)
, (12)

Q̄,L̄,J̄ finite-time matrix representations of Q, L and J , and

ACP =

[
AP BPCC

−BCCPy AC −BCDPyCC

]
(13)

the system matrix of the closed-loop connection of C and P .

Proof (1) Follows from Theorem 4. (2) Note that λ(A) =
{λ(ACP ), λ(AL), λ(AQ)}. Hence, ρ(A) < 1 ⇔
ρ(ACP ) < 1, ρ(AL) < 1, ρ(AQ) < 1. (3) Sub-
stituting A, B0, C and D0 in (8) in condition 3 in
Lemma 8 yields G(z) = Q(z)(1 − L(z)J(z)), and hence
ρ(G(z)) < 1⇔ ρ(Q(z)(1− L(z)J(z)) < 1.

Theorem 10 shows that stability along the pass has several
connections to well-known convergence conditions in ILC.
First, asymptotic stability of the dLRP corresponds to the
finite-time convergence criterion in [4, Theorem 1]. Second,
stability along the pass demands that the time domain dy-
namics for a fixed pass k are stable. In the inferential ILC set-
ting, this demands L andQ filters that are strictly stable, and
ρ(ACP ) < 1, i.e., C is an internally stabilizing controller.
Third, Theorem 10 reveals that the third condition for stabil-
ity along the pass is equivalent to the well-known frequency
domain convergence criterion ρ(Q(z)(1 − L(z)J(z)) < 1,
as is developed in, e.g., [4, Theorem 6].

In contrast, traditional ILC analysis and designs [3] involves
weaker stability conditions than presented in Theorem 10.
Typically, first an internally stabilizing feedback controller
satisfying condition 2a in Theorem 10 is designed and then
a (monotonically) convergent ILC algorithm, satisfying con-
dition 1 and optionally 3. In this case there is no guarantee
that ρ(A∞) < 1. This is precisely the issue that arises in Ex-
ample 1. Clearly, a stable limit profile is a key requirement.

A convergent ILC algorithm is assumed in Example 1 in
Section 2.2. Next, it is shown that this result holds for any
L if C includes integral action and Q = 1.

Theorem 11 Given Q = 1, P (z) =

[
P z(z)

P y(z)

]
, and C with

minimal state-space representation AC , BC , CC , DC , sat-
isfying ρ(ACP ) < 1 in (13) and 1 ∈ λ(AC). Then, for any
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learning filter L it follows that either condition 2 or condi-
tion 3 for stability along the pass in Theorem 10 is violated.

Proof Suppose that condition 2 in Theorem 10 holds, i.e.,
ρ(ACP ) < 1, and ρ(AL) < 1. Let Sy = (1 + CP y)−1.
Since ρ(ACP ) < 1 it follows that Sy(z = 1) = 0 sinceCP y
has a pole z = 1. Next, by internal stability ρ(ACP ) < 1,
J(z = 1) = P z(z = 1)Sy(z = 1) = 0. From ρ(AL) < 1, it
directly follows that ρ (1− L(z = 1)J(z = 1)) = 1, hence
condition 3 is violated. To show the converse, suppose that
condition 3 in Theorem 10 holds. Since J(z = 1) = 0,
ρ (1− L(z)J(z)) < 1,∀ |z| = 1, z ∈ C necessitates L(z =
1)J(z = 1) 6= 0, hence 1 ∈ λ(AL) and ρ(AL) ≥ 1, thus
violating condition 2 in Theorem 10.

In Theorem 11, it is shown that either condition 2, or con-
dition 3 for stability along the pass can be satisfied, but not
simultaneously. Hence, stability along the pass can often not
be achieved for the inferential control structure in Fig. 3.

Partial solutions include the following. First, the integral ac-
tion in C could be removed. However, integral action is es-
sential in attenuating trial-varying disturbances and often al-
ready present before ILC is introduced. Second, introducing
a robustness Q-filter does not imply that stability along the
pass can be achieved. First, suppose condition 2 in Theorem
10 is violated due to ρ(AL) = 1. Clearly, Q-filtering cannot
change the latter. Second, suppose that condition 3 in The-
orem 10 is violated if Q = 1. In this case a Q-filter may be
designed such that ρ(Q(z)(I−L(z)J(z))) < 1 ∀|z| = 1 by
including a zero in Q(z) for z = 1. The latter is essentially
canceling the unstable pole at z = 1 in 1 − L(z)J(z) with
a zero in Q(z) which merely hides the unstable poles.

In view of the results in Theorem 11, a more systematic
solution approach is investigated next.

5 Inferential ILC solutions

In this section, approaches for inferential ILC are presented
that guarantee stability in a 2D systems sense. One approach
is to replace the parallel ILC structure in Fig. 3 with a serial
ILC structure. This serial structure is presented in Fig. 4.
The key difference is that the ILC signal is the reference
signal for the feedback loop instead of a feedforward signal
as in the parallel structure. The serial structure may be more
convenient to implement in case it is practically not possible
to inject a feedforward signal.

In Theorem 11 it is shown that stability along the pass in the
parallel structure cannot be achieved for any learning filter
L if Q = 1 and C includes integral action. Note that the
serial structure is captured in the parallel structure by setting
C = 0 in Fig. 3 and P = Jser, with zk = Jserηk. Here
Jser is the closed-loop system illustrated in Fig. 4 within
the dotted area. Hence, the previously developed theory for
the parallel structure can be applied to the serial structure as
well by changing the definitions of C and P .

ηk
P

yk

zk ezk

−

r

C
eyk −

LQ
lk

ILC

uk

ηk+1

FB

Fig. 4. Serial inferential ILC setup: the ILC algorithm is cascaded
with the feedback control loop.

Consider the following corollary of Theorem 10 to analyze
stability along the pass for the serial structure.

Corollary 12 The serial inferential ILC structure is stable
along the pass if and only if the following three conditions
hold

(1) ρ(Q̄(I − L̄J̄ser)) < 1,
(2) (a) ρ(AJser ) < 1,

(b) ρ(AL) < 1,
(c) ρ(AQ) < 1,

(3) ρ (Q(z)(I − L(z)Jser(z))) < 1,∀|z| = 1, z ∈ C.

with

Jser(z) =
C(z)P z(z)

1 + C(z)P y(z)
, (14)

AJser corresponding to a minimal realization of (14), and
Q̄,L̄,J̄ser finite-time matrix representations ofQ,L and Jser.

The learning filter must include integral action when the
parallel control structure is used in order to satisfy condition
3 of stability long the pass, as shown in part 2 of the proof
in Theorem 11. This is not the case for the serial structure,
since limz→1 Jser(z) = P z(z)

Py(z) when C includes I-action.
Clearly, this limit does not include C−1(z) as is the case
with the parallel structure. This shows that if C includes
integral action, then L does not need to include integral
action and stability along the pass can still be achieved with
the serial structure. To illustrate this, the numerical example
in Section 2.2 is revisited.

Remark 2 As (14) reveals, the poles of Jser(z) are identical
to the poles of J(z), see (12). The zeros of J(z) and Jser(z)
both include the zeros of P z(z). A key difference between
the parallel and serial ILC structures is that the zeros of
Jser also include the zeros of C, in contrast to the parallel
structure. In case C is non-minimum phase, the parallel
structure could be preferred since it avoids L filter design
for a non-minimum phase system.

Example revisited - 2 The system P is given in Example
1, the controller C includes integral action and is given

by C =

 1 1

0.5 0.5


. Here, C includes direct feed-trough to

facilitate the exposition, this assumption is non-restrictive.
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Fig. 5. Reference r (left), stable limit profile η∞ for the serial
structure (center), unstable limit profile f∞ for the parallel struc-
ture (right).

The resulting closed-loop system zk = Jserηk is given by

zk =


A

Jser BJser

CJser DJser




︸ ︷︷ ︸
Jser

ηk,

with AJser = 0.4, BJser = 0.4, CJser = 0.2, and DJser =
0.2. Clearly, the closed-loop system is asymptotically stable
since ρ(AJser ) < 1. Let the learning filter L = 5, and
robustness filter Q = 1. The three conditions for stability
along the pass are verified next using Corollary 12.

The first condition ρ(Q̄(I−L̄J̄ser)) = 0, since 1−LDJser =
0, hence the underlying dLRP is asymptotically stable. The
second condition only demands ρ(AJser ) < 1 since AL = ∅
and AQ = ∅. This is indeed the case as already shown. The
third condition requires ρ (Q(I − LJser(z))) < 1,∀|z| = 1,

z ∈ C, and it can be verified thatQ(1−LJser(z)) =

 0.4 0.4

−1 0


.

Using the latter, the third condition is also satisfied since
ρ (Q(1− LJser(z))) ≤ 2

3 , ∀|z| = 1, z ∈ C. Consequently,
the resulting limit profile is asymptotically stable. This is
verified next by using Corollary 12 and Theorem 6. The

limit profile is given by
[
η∞

ez∞

]
=




0 2

−1

0

5

0


r. Clearly, the limit

profile is asymptotically stable, and the resulting ez∞ = 0.
Figure 5 shows an example reference r, the corresponding
limit profile η∞, and the limit profile f∞ from the parallel
structure in (4). It is shown that the serial structure can
eliminate the stability issues that are illustrated in Example
1. The results in Fig. 5 also show that in case the trial length
is sufficiently short with respect to the growth rate in f∞,
an ILC that is unstable along the pass could be relevant in
practice since in this case the signal growth remains small
and may not be a safety hazard.

6 Stability of classical y = z ILC

In the traditional ILC case with y = z, see e.g., [3,15],
the state-space system for f∞ in (10) is non-minimal since
BC(I − DPyDPz−1

) = 0 in (10) if DPy = DPz . The
states associated with AC in (10) are not controllable. This

fk

P
yk

−
r

Cs

eyk

Ls Q
ILC

fk+1

fk

P
yk

−
r

Cs

eyk

Q
ILC

fk+1
Ls

a) Unstable along the pass

b) Stable along the pass

Ci

Ci

Ci

FB

FB

Fig. 6. Classical y = z case, with C including integral action.
a) The traditional implementation cannot be stable along the pass
and may cause issues in practice. b) Solution with Ls

suggests that the input-output behavior of (10) is stable, even
if ρ(AC) = 1 when C includes integral action. The diagram
in Fig. 6a shows the y = z situation, where C and L contain
Ci integrators. In practice, numerical integration errors in
the states of the integrators may cause the control signals of
the ILC and feedback controller to drift from trial to trial.
The results in Theorem 11 are also valid for the traditional
y = z case, as is illustrated in the following corollary.

Corollary 13 Given Q = 1, a system y = P (z)u, and
an internally stabilizing C with 1 ∈ λ(AC). Then, for any
learning filter L follows that either condition 2 or condition
3 for stability along the pass in Theorem 10 is violated.

Proof Follows from Theorem 11, with P y = P z = P .

The latter shows that if C includes integral action and Q =
1, also classical ILC implementations are not stable along
the pass. Besides resorting to the serial ILC structure in
Section 5, an alternative approach is presented in Fig. 6
and is related to a similar solution in optimal controller
synthesis that relies on re-arranging the loop structure, see
also [16] for related ideas. Suppose C and L include integral
action. Let C(z) = Ci(z)Cs(z), with Ci the integrators,
and Cs(z) strictly stable. Then apply ILC algorithm f =
Q(f + LsCie

y
k). The key idea is to use Cie

y
k as an extra

output of the controller, as shown in Fig. 6.

Stability along the pass directly follows by setting J(z) :=

Jstab(z) in Theorem 10, with Jstab(z) = Ci(z)P (z)
1+Ci(z)CsP (z) .

Since limz→1 J(z) = C−1s (z) with Cs strictly stable, the
learning filter does not need to include integral action if C
includes integral action and ρ(AL) < 1. Hence, stability
along the pass can be achieved with the proposed change
in structure. This in turn guarantees a stable limit profile,
leading to a stable ILC implementation.

7



7 Conclusion

Stability problems with inferential ILC are analyzed and so-
lutions are proposed. It is shown that directly casting com-
mon control structures to the inferential setting can lead to
configurations that are not stable in a 2D systems setting.

This aspect is analyzed by casting the time-trial dynamics
into a discrete linear repetitive process, which is a class of 2D
systems. To facilitate the analysis of the inferential control
structure, the 2D stability notion of stability along the pass
is translated to conditions on the ILC algorithm.

If the feedback controller includes integral action, the re-
sulting ILC-feedback combination cannot be stable in a 2D
sense. Solutions are presented and rely on changing the con-
troller structure from a parallel to a serial configuration. In
addition, insights in classical ILC where the performance
variables are also used for feedback control are obtained.

Inferential ILC has important application areas such as print-
ing systems, see [9]. Ongoing research is towards more ex-
perimental implementations and inter-sample behavior.
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A Appendix auxiliary results

Definition 14 The characteristic polynomial of (7) equals

ϕ(z1, z2) := det

(
I − z1A −z1B0

−z2C I − z2D0

)
, z1, z2 ∈ C. (A.1)

See [17] and [8, eq. (1.52), pp 36] for equivalent definitions.

Lemma 15 Given a characteristic polynomial ϕ(z1, z2)
with z1, z2 ∈ C, then ϕ(z1, z2) 6= 0 ∀|z1| ≤ 1, ∀|z2| ≤ 1 iff

(1) ϕ(z1, 0) 6= 0 ∀|z1| ≤ 1,

(2) ϕ(z1, z2) 6= 0 ∀|z1| = 1, |z2| ≤ 1.

In the latter, the role of z1 and z2 may be interchanged.

Proof These conditions are presented in [18].

Proof Lemma 8 Given the controllability and the observ-
ability requirements, [8, Theorem 2.2.8, pp 64] reveals that
the dLRP is stable along the pass if and only if

ϕ(z1, z2) 6= 0, ∀z1, z2 ∈ C, |z1| ≤ 1, |z2| ≤ 1. (A.2)

Applying [19, Proposition 2.8.3] to (A.2) yields ϕ(z1, z2) =
det(I − z1A) det(I − z2G(z1)) with G(z1) = C(z1I −
A)−1B0 +D0. Using Lemma 15 in Appendix A yields that
condition (A.2) is equivalent to satisfying

(1) det(z1I −A) 6= 0 ∀ |z1| ≤ 1,
(2) det(I − z2G(z1)) 6= 0, ∀ |z1| = 1, |z2| ≤ 1.

These conditions are satisfied iff ρ(A) < 1 and ρ(G(z1)) <
1,∀|z1| = 1, corresponding to conditions 2 and 3 in Lemma
8, respectively. Interchanging z1 and z2 in Lemma 15 yields
that also ρ(D0) < 1.

Proof Theorem 9 Applying [19, Proposition 2.8.4]
to (A.1) yields characteristic polynomial ϕ(z1, z2) =
det(I − z2D0) det(I − z1H(z2)), with H(z2) = B0(Iz2−
D0)−1C + A. Applying Lemma 15 yields ρ(H(z2)) <
1,∀|z2| = 1. From (9) follows A∞ = H(z2 = 1), hence
ρ(A∞) < 1 if dLRP (7) is stable along the pass.
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