Synchronized Motion Control for Overall Performance
Enhancement: A Youla Framework Applied to a Wafer Scanner

Enzo Evers 1, Marc van de Wal 2, Tom Oomen 1

1 Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology group
PO Box 513, 5600MB Eindhoven, The Netherlands, e-mail: e.evers@tue.nl
2 ASML Research, Veldhoven, The Netherlands.

1 Background
Many machines used in the manufacturing industry consist of multiple subsystems. In view of complexity, the design and control of these systems of systems is often divided into manageable subproblems. Due to the decentralized control [1] approach of these systems their full system performance is often sub-optimal. The main idea of this work is to provide a framework that can be used to design coupling elements for the decentralized control architecture in order to improve overall performance.

2 Problem
An example of a system of systems is a wafer scanner used in the lithographic industry. Typically, both sub-systems can be considered approximately decoupled. Thus, in the scan direction, the combined system can be modeled as two decentralized scalar control loops as shown in Fig. 1. Accuracy during die exposure depends on the relative error, $e_{wr} = y_w - y_r$, between the two motion stages. Therefore,

\[P_r \rightarrow C_r \rightarrow y_r \]
\[P_w \rightarrow C_w \rightarrow y_w \]

minimization of the two individual tracking errors e_c and e_w is a sufficient condition for a small relative error. However, the full system performance is limited by the performance limitations of each individual subsystem. In this work, the main goal is to design an add-on control element that retains the existing diagonal control elements and minimizes the relative error.

3 Approach
The coupling problem is recast as a Youla parameterization using coprime factorization, shown in Fig. 2. The Youla parameterization allows for a systematic analysis and separation of the nominal controller $K_0 = N_k D_k^{-1}$ and nominal plant $P_0 = N D^{-1}$ and the additional add-on controller freedom Δ_k. Furthermore, the framework is extended to include plant uncertainty to provide a robust stability proof [2].

4 Result
The Youla framework, together with design guidelines, allows for a straightforward design of the coupling elements in Δ_k while guaranteeing nominal system stability. The full system performance, shown in Fig. 3, is improved beyond the limitations of the individual sub-systems by the addition of the coupling elements to the decentralized loops. Using this approach the decentralized controllers are unchanged and invariant to the additional coupling which facilitates industrial adaptation.

References