
Asymptotically exact direct data-driven
multivariable controller tuning

Simone Formentin ∗, Andrea Bisoffi ∗∗, Tom Oomen ∗∗∗

∗ Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, via G. Ponzio, 34/5 - 20133 Milano, Italy.

E-mail to: simone.formentin@polimi.it.
∗∗ Department of Industrial Engineering, University of Trento,

Via Sommarive, 9 - 38123 Trento, Italy.
∗∗∗ Control Systems Technology Group, Department of Mechanical
Engineering, Eindhoven University of Technology, Eindhoven,

The Netherlands.

Abstract: In this paper, a data-driven controller design method for multivariable systems is
introduced and analyzed. The proposed technique is direct, as it is entirely based on experimental
data and does not rely on a physical description of the system, and non-iterative, as it does not
require controller adjustments based on additional experiments. Compared to the state-of-the-
art non-iterative technique, i.e. MIMO VRFT, the proposed approach is asymptotically exact,
in that it guarantees that the desired closed-loop dynamics is matched when the number of data
tends to infinity. The performance of the proposed approach is illustrated and compared with
MIMO VRFT on a benchmark simulation example.
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1. INTRODUCTION

Model based control design is a systematic approach
to deal with interaction in multivariable systems (see
Skogestad and Postlethwaite (2005); Maciejowski (1989)).
However, modeling is expensive and it is estimated that
about 75% of the cost of complex control applications
is devoted to modeling, see Gevers (2005). This is par-
ticularly the case for multivariable systems. In addition,
when the resulting controller structure is fixed, which is
often the case (e.g., multivariable PIDs), then additional
issues arise, including fixed structure synthesis or model
reduction, see Bunse-Gerstner et al. (2010).
The modeling of the system can be avoided, by directly
optimizing the controller parameters using experimental
data. The first papers on data-to-controller design pro-
posed self-tuning regulation (STR) and model-reference
adaptive control (MRAC) (see Astrom and Wittenmark
(1994) for a complete overview).

More recently, two iterative methods have been proposed
to design reliable controllers off-line with a small number
of closed-loop experiments on the plant.
The first method is the Iterative Feedback Tuning (IFT)
approach (see Hjalmarsson et al. (2002)), where an un-
biased estimate of the gradient is provided entirely from
input/output (I/O) data collected on the actual closed-
loop system.
The second technique is known as Iterative Correlation-
based Tuning (ICbT) and has been introduced in Mǐskovic
et al. (2003) for single-input/single-output (SISO) plants.
A MIMO extension is discussed in Miskovic et al. (2007),
where it has been shown that the correlation-based con-
troller tuning provides better tracking performance in
fewer experiments than IFT.

In Formentin and Savaresi (2011) and Formentin et al.
(2012), a non-iterative method has been proposed, which
provides a multivariable controller based on the well
known Virtual Reference Feedback Tuning (VRFT) ratio-
nale (see Campi et al. (2002); Savaresi and Guardabassi
(1998)). The method relies on a single set of open-loop
I/O data collected on a stable MIMO LTI square plant.
Initial results in this direction also appeared in Nakamoto
(2003), but this work was a preliminary attempt towards a
complete strategy, as the proposed method was a straight-
forward extension of the existing SISO VRFT, whereas
important issues as undermodeling and treatment of noise
were not discussed.
In this work, a different approach to the problem is
presented. Instead of the VRFT rationale in Formentin
et al. (2012), a data-based reformulation of the closed-loop
model matching cost function is presented and proven to
be equivalent to the original problem. Then, it is shown
that, by feeding the system with a specific sequence of
persistently exciting signals, the reformulated problem
can be solved using only the collected data and convex
optimization tools, without modeling the system. The
results exploit recent results from Oomen et al. (2014),
where a data-driven approach to estimate the H∞ norm
of multivariable systems is investigated. Here, it is instead
used for tuning MIMO controller parameters.
To deal with output noise and obtain a consistent esti-
mate of the optimal controller, the above methodology
is endowed of an instrumental variable-based correction
inspired to Stoica and Jansson (2000). It comes out that,
in its more general form, the algorithm can be based on
simple least squares estimation.

The remainder of the paper is organized as follows. Sec-
tion 2 formally states the problem and defines the math-
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ematical framework. The MIMO VRFT method is briefly
recalled in Section 3, where its limitations are also ana-
lyzed. The method proposed in this paper is introduced
and discussed in the noiseless case in Section 4 and for
noisy data in Section 5. In Section 6, the performance
of the proposed method is illustrated and compared to
MIMO VRFT and other state of the art techniques on
a benchmark example. Some concluding remarks end the
paper.

2. PROBLEM FORMULATION

Consider the unknown LTI discrete-time multivariable n×
n stable plant G(q−1), where q−1 denotes the backward
shift operator. The above system is such that, provided
the n-dimensional input vector u(t) = [u1(t), . . . , un(t)]

T ,
the n-dimensional output y(t) = [y1(t), . . . , yn(t)]

T is given
by

y(t) = G(q−1)u(t). (1)

Consider that a linear, fixed-order controller class C(q−1, θ),
parameterized through θ, is given. From now on, the de-
pendence on q−1 will be sometimes omitted for brevity.
Define the L2-norm of a generic discrete-time multivariable
system X(q−1) as

∥X∥2 =

(
1

2π

∫ π

−π

tr
[
X(ejω)XH(ejω)

]
dω

)1/2

,

where the operator tr(·) denotes the trace of a matrix and
the superscript H indicates the hermitian conjugate of a
complex matrix. The control problem considered in this
work is a classical model-reference control problem, that is,
the problem of designing a controller in the class C(q−1, θ)
for which the output complementary sensitivity function
matches a user-defined stable strictly proper reference
model M(q−1). More formally, the problem can be stated
as follows.

Problem 1. Find

θ̂o = argmin
θ

JMR(θ), (2a)

JMR(θ) =
∥∥∥M − (I +GC(θ))

−1
GC(θ)

∥∥∥2
2
, (2b)

where I is the n× n identity matrix.

Consider then the following assumption and problem for-
mulation.

Assumption 1. The nc-th order control law is defined as

u(t) = u(t− 1) +

nc∑
m=0

Bme(t−m), (3)

where e(t) = r(t) − y(t) represents the tracking error
computed from the n-dimensional reference vector r(t) =
[r1(t), . . . , rn(t)]

T and Bm ∈ Rn×n are matrices containing
the controller parameters θ such that

θ =
[
vec(B0)

T · · · vec(Bnc)
T
]T

, (4)

where vec is the standard vectorization operator for a
matrix.

Problem 2. Find

θ̂c = argmin
θ

J(θ), (5a)

J(θ) = ∥∆(θ)∥22 , (5b)

∆(θ) = M − (I −M)GC(θ). (5c)

Some remarks are due:

• Problem 1 is non-convex, whereas, under Assump-
tion 1, Problem 2 is convex.

• The controller parameterization in (3) includes all
PID-like control structures.

• If the desired sensitivity function I − M is close to

the actual sensitivity function (I + GC(θ̂o))
−1, the

criterion J(θ) is a good approximation of JMR(θ) and

θ̂c ≈ θ̂o. Even if using Problem 2 as a reformulation
of Problem 1 generally yields only an approximation
of the controller achieving M , this choice allows the
design procedure to be convexified. For this reason,
similar problem reformulations are widely employed
in identification for control, data-driven tuning and
H2 model-reduction (see Hjalmarsson (2005) for an
overview).

• C(θ̂o) generally does not make JMR = 0, as the
controller achieving JMR = 0 might be of very high
order and non-causal.

Consider now that an open-loop collection of Input/Output
(I/O) data is available, namely DN = {u(t), ỹ(t)}, t =
1, . . . , N , where

ỹ(t) = y(t) + w(t) = G(q−1)u(t) + w(t) (6)

is the noise-affected output and w(t) can be any colored
zero-mean noise uncorrelated with the input u(t) and
representing, e.g., the measurement disturbances.

In standard “indirect” data-driven approaches, minimiza-
tion of (5) can be achieved by identifying from data a

model Ĝ of the plant and evaluating J(θ) using Ĝ. This
approach is very sensitive to modeling errors, therefore
structure and order selection need to be carried out very
accurately.

In this work, Problem 2 will be solved directly from data,
without the need to parameterize and identify a model Ĝ
of the system.

3. THE MIMO VRFT METHOD REVISITED

In this section, we briefly recall the state of the art
technique for multivariable data-driven controller tuning,
namely the MIMO VRFT approach in Formentin et al.
(2012).

In few words, the idea proposed in Formentin et al. (2012)
to solve Problem 2 without identifying G(q−1) is to build a
“virtual” closed-loop system, where the input and output
signals are equal to u(t) and y(t) and the closed-loop
transfer function is assumed to correspond to M(q−1).
From the above loop, the so-called “virtual reference”
rV (t) and “virtual error” eV (t) signals can be computed
off-line as

rV (t) = M−1(q−1)y(t) , eV (t) = rV (t)− y(t).

The control design problem is then reduced to an identifi-
cation one and the optimization procedure is still convex
if the controller structure is selected as in (3).
The problem to be solved is then, in the noiseless case, the
following.

Problem 3. Find

θ̂V R = argmin
θ

JN
VR(θ) (7a)

JN
VR(θ) =

1

N

N∑
t=1

∥uLu(t)− C(θ)eLe(t)∥
2
2 , (7b)
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where

uLu(t) = Lu(q
−1)u(t),

eLe(t) = Le(q
−1)eV (t)

= Le(q
−1)(M−1(q−1)− I)G(q−1)Ly(q

−1)u(t),

and Lu, Le, Ly are suitable data prefilters.

The prefilters are required in case the controller that leads
the cost function J(θ) to zero is not in the controller set

(see Campi et al. (2002)), as θ̂V R and θ̂c could not coincide.
Optimal filter selection is defined by the following result.

Proposition 1. If data prefilters in (7) are selected as

Lu = MΦ−1/2
u , Le = C−1(θ), Ly = C(θ)Φ−1/2

u , (8)

where Φu is the power spectral density of u and Φ
1/2
u is

a spectral factor of Φu, then θ̂V R and θ̂c asymptotically
coincide.

Proof. See Formentin et al. (2012). �

Since (8) are θ-dependent, such filters cannot be imple-
mented. Therefore, Formentin et al. (2012) employs Lu =
Le = L = M and Ly = I. This choice is optimal only in
case C(θ),M and G can commute (e.g., for SISO systems),
but it is suboptimal everywhere else. From a system-
theoretic perspective, the above filter selection makes the
frequency-expression of J(θ) in (5) equal to a new cost

function J̃(θ)

J̃(θ) =
1

2π

∫ π

−π

tr [M − C(θ)G (I −M)]× (9)

×Φu [M − C(θ)G (I −M)]
H

dω.

Notice that (9) is also the frequency-wise convex approxi-
mation of

J̃MR(θ) =
∥∥∥(M − (I + C(θ)G)

−1
C(θ)G

)
Φ1/2

u

∥∥∥2
2
. (10)

In this way, C(θ) is chosen such to make the input - and
not the output - complementary sensivity function as close
as possible to M .
In what follows, a procedure guaranteeing the matching of
the output complementary sensitivity function is provided.
In the new procedure, no prefilters will be required, thus
not needing any suboptimal approximation.

4. MULTIVARIABLE CONTROLLER TUNING

In the last section, the deficiences of the VRFT method
for MIMO systems have been revealed. In this section, a
new method is proposed to solve these deficiences, which
constitutes the main contribution of this paper.
To introduce the method, the case of noiseless data will
be first addressed, namely, w(t) = 0, ∀t in (6) so that the
measured ỹ(t) coincides with y(t) = G(q−1)u(t). Consider
the following signal-based reformulation of Problem 2.

Problem 4. Find

θ̂D = argmin
θ

JD(θ), (11a)

JD(θ) = ∥ε(t, θ)∥22 , (11b)

ε(t, θ) = ∆(q−1, θ)u(t), t = 1, . . . , N. (11c)

Next, the matching problem is investigated. The following
result holds.

Theorem 1. (Asymptotic equivalence of Problems 2 and 4).
Assume that Φu(ω) = λ2I, ∀ω, λ ∈ R. Then,

lim
N→∞

θ̂D = θ̂c.

Proof. By definition of L2 norm of a MIMO system, (5b)
can be rewritten as

J(θ) =
1

2π

∫ π

−π

tr
[
∆(e−jω, θ)

] [
∆(e−jω, θ)

]H
dω. (12)

For Parseval’s theorem, (11b) is such that

lim
N→∞

JD(θ) =
1

2π

π∫
−π

tr
[
∆(e−jω, θ)

]
Φu(ω)

[
∆(e−jω, θ)

]H
dω.

(13)
Under the required assumption on Φu(ω), it holds that
limN→∞ JD(θ) = λ2J(θ), then the values of θ minimizing
limN→∞ JD(θ) and J(θ) coincide for any λ, which is the
thesis. �

Although in Problem 4 the knowledge of a model of G is
still required to compute ε(t, θ), in the new formulation
of this work the design problem can be solved using data
only and bypassing the identification of G.
As a matter of fact, notice that the matching signal ε(t, θ)
can be computed as

ε(t, θ) = ∆(q−1, θ)u(t)

= M(q−1)u(t)−
(
I −M(q−1)

)
G(q−1)C(q−1, θ)u(t)

= M(q−1)u(t)−
(
I −M(q−1)

)
v(t, θ), (14)

where the i-th element of v(t) is expressed by

vi(t, θ) =

n∑
j=1

n∑
k=1

GijCjk(θ)uk(t) (15)

and uk(t) is the k-th entry of u(t). Since Gij and Cjk are
scalar systems, they can commute and, therefore, (15) can
equivalently be rewritten as

vi(t, θ) =

n∑
j=1

n∑
k=1

Cjk(θ)Gijuk(t) =

n∑
j=1

n∑
k=1

Cjk(θ)yijk(t),

(16)

with obvious definition for yijk(t). Notice that, using (16),
(14) is no longer expressed as a function of the plant model.
A similar approach has been proposed in Oomen et al.
(2014) to directly estimate from data the H∞ norm of a
dynamical system.

From an experimental point of view, yijk(t) can be ob-
tained from n× n experiments as follows.

Define n sequences of input signals u1(t), . . . , un(t) with
t = 1, . . . , N such that (i) each one of them may coincide
with uk(t) in (15) and (16) (ii) when stacked into a
vector [u1(t) . . . un(t)]

T , such a vector actually represents
the vector of signals u(t) in (14). For consistency, it will
be assumed from now on that the input u(t) used in
the identification experiment satisfies the assumption of
Theorem 1.
Notice that, when the input sequence k is positioned on
the input channel j, i.e., the input is

u(t) = [ 0︸︷︷︸
position 1

. . . 0 uk(t)︸ ︷︷ ︸
position j

0 . . . 0︸︷︷︸
position n

]T ,

the output corresponds to

yjk(t) = G(q−1)u(t) = G(j)(q−1)uk(t) (17)
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where G(j)(q−1) denotes the j-th column of transfer func-
tion G(q−1). The generic component i of this yjk(t) is
exactly the term yijk(t) in (16). It is clear then that n×n
open-loop experiments are needed to get all the yjk(t)
vectors in (17).
Finally, it should be here remarked that the n sequences
of input signals uk(t), k = 1, . . . , n, t = 1, . . . , N , must
be selected such that every channel of the real-world plant
can be fed with any sequence of the set.

5. DEALING WITH NOISY DATA

In the last section, a new data-driven method was pre-
sented to determine the optimal solution to Problem 2.
In this section, an approach to deal with the presence of
output noise is discussed.
Suppose that w(t) ̸= 0 in (6). It follows that all the yijk’s
are noisy and the terms Gijuk(t) cannot be equivalently
replaced by them. In other words, the minimization of
JD(θ) would yield biased results of the estimate, as it will
be shown next.
In this Section, the instrumental variable technique pro-
posed in Stoica and Jansson (2000) will be employed to
make the minima of noisy and noiseless cost criteria co-
incident, similarly to the procedure followed in Formentin
et al. (2012).

To start with, define the estimates of the vi’s in (16) as

v̂i(t, θ) =

n∑
j=1

n∑
k=1

Cjk(θ)ỹijk(t), (18)

using (6), which yields:

v̂i(t, θ) = vi(t, θ) +
n∑

j=1

n∑
k=1

Cjk(θ)wijk(t) (19)

and clearly v̂i(t, θ) ̸= vi(t, θ). The bias term is null when
θ = 0, therefore the minimization of the computable
matching error

ε̂(t, θ) = M(q−1)u(t)−
(
I −M(q−1)

)
v̂(t, θ) (20)

would undesirably lead to a trade-off solution between 0

and θ̂D.
Introduce now the extended instrumental variable ζ(t) (see
Stoica and Jansson (2000)) as

ζ(t) =

u(t+ l)
...

u(t− l)

 ,

where l is a sufficiently large integer.

Since by assumption w and u are uncorrelated, then

Ξ(θ) = E[ε̂(t)ζT (t)]
= E[

(
M(q−1)u(t)−

(
I −M(q−1)

)
v̂(t, θ)

)
ζT (t)]

= E[
(
M(q−1)u(t)−

(
I −M(q−1)

)
v(t, θ)

)
ζT (t)]

= E[ε(t)ζT (t)] (21)

(see Stoica and Jansson (2000) for further details). Ideally,
the optimal solution should make ε(t) = 0, ∀t, therefore
one way to search for the solution θ̂D in the noisy setting
is to enforce Ξ(θ) = 0.

From the above reasoning, it follows that

vec
{
E
[(

M(q−1)u(t)−
(
I −M(q−1)

)
v̂(t, θ̂D)

)
ζT (t)

]}

should be enforced to zero.

Now, using the controller expression in (3), the v̂i(t, θ)’s
in (18) can be rewritten as

v̂i(t, θ) =
1

1− q−1

n∑
j=1

n∑
k=1

nc∑
m=0

B(jk)
m ỹijk(t−m), (22)

where B
(jk)
m is the element in position (j, k) of Bm.

The triple sum in (22) is equivalent to[
ỹ
(I)
i11(t) . . . ỹ

(I)
inn(t)| · · · |ỹ

(I)
i11(t− nc) . . . ỹ

(I)
inn(t− nc)

]
︸ ︷︷ ︸

Ỹ
(I)
i

(t)

θ,

where y
(I)
ijk(t) is the discrete integral of yijk(t). Then, each

component of v̂(t, θ), v̂i(t, θ), can be written as v̂i(t, θ) =

Ỹ
(I)
i (t)θ and

v̂(t, θ) = Ỹ (I)θ (23)

where Ỹ (I) is the stack of the Ỹ
(I)
i ’s.

Then, from (21) and (23), the optimal solution needs to
set

E
[
vec

{(
M(q−1)u(t)−

(
I −M(q−1)

)
Ỹ (I)(t)θ̂D

)
ζT (t)

}]
to zero.
Thanks to the properties of the Kronecker product ⊗,

E
[
vec

{
(I −M(q−1))Ỹ (I)(t)θ̂Dζ(t)T

}]
= E

[(
ζ(t)⊗

(
(I −M(q−1))Ỹ (I)(t)

))
θ̂D

]
.

Then, by splitting E[·] into its single terms, it can be

highlighted that Ξ(θ̂D) = 0 if

r −Rθ̂D = 0,

where

r = E[vec{uM (t)ζT (t)}] (24a)

R = E
[
ζ(t)⊗

(
(I −M(q−1))Ỹ (I)(t)

)]
(24b)

and uM (t) = M(q−1)u(t).

The solution θ̂D can be easily computed using least
squares-like formulas and the sample versions of R and
r, that is,

θ̂D =
(
R̂T R̂

)−1

R̂T r̂, (25)

R̂ =
1

N

N∑
t=1

ζ(t)⊗
(
(I −M(q−1))Ỹ (I)(t)

)
(26a)

r̂ =
1

N

N∑
t=1

vec
{
uM (t)ζT (t)

}
(26b)

where summations could also be made from t sufficiently
large instead of from t = 0, in order to get rid of the effect
of the initial conditions, as indicated in Stoica and Jansson
(2000).

The covariance matrix of the residual for the estimate (25)
is

Q = E
[(

r̂ − R̂θ
)(

r̂ − R̂θ
)T

]
.

Then, the estimate can be refined by suitably weighting
the regressors, that is, by substituting (25) with

θ̂QD =
(
R̂T Q̂−1R̂

)−1 (
R̂T Q̂−1r̂

)
. (27)
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where Q̂ is a sample estimate of Q (see Stoica and Jansson
(2000) for further details). Doing so, the covariance of the
parameters becomes

cov(θ̂QD) =
(
RTQ−1R

)−1
,

therefore a proper choice of Q might largely improve the
statistical efficiency of the estimate.

6. SIMULATION EXAMPLE

To show the effectiveness of the proposed approach, the
multivariable PI controller tuning problem for a LV100
gas turbine engine (see Yeddanapudi and Potvin (1997))
is considered as a simulation setup. The same example
has been already employed in Miskovic et al. (2007), Hjal-
marsson (1999) and Formentin et al. (2012) to illustrate
the performance of other data-driven approaches, namely
IFT, ICbT and MIMO VRFT.
The plant has 5 states: gas generator spool speed, power
output, temperature, fuel flow actuator level and variable
area turbine nozzle actuator level. The input signals are
fuel flow and variable area turbine nozzle and the output
signals are gas generator spool speed and temperature.
The measurement noise is zero mean white noise with
variance 0.0025I. The reference model is selected as

M(q−1) =


0.4q−1

1− 0.6q−1
0

0
0.4q−1

1− 0.6q−1

 .

In order to tune a multivariable coupled PI controller with
the proposed non-iterative approach, an experiment has
been set up by employing two PRBS input sequences u1

and u2 as described at the end of Section 4. First, the
sequence u1 is used to feed the first channel, then the same
input is switched to the second channel. Finally, u2 is used
to separately feed the two channels, analogously to what
has been done for u1. We note that these PRBS sequences
satisfy the assumption in Theorem 1. The overall experi-
ment can be considered as a unique dataset that can be
used to design the MIMO controller with MIMO VRFT, so
that the controllers obtained with the two methods can be
(fairly) compared based on the same number of data. To
select the length of the instrumental variable l, the order
of magnitude of the (approximate) length of the impulse
response of the element of M with the highest settling
time is considered. Then, in this case, l = 35 if found by
cross-validation. This approach is based on semi-empirical
observations and has already been employed several times
in the literature, see, e.g., Formentin et al. (2013, 2014).
The implementation of the discussed method returns the
following transfer matrix

Kdd(q
−1) =

 0.3325− 0.1154q−1

1− q−1

0.4453− 0.3532q−1

1− q−1

15.33− 14.88q−1

1− q−1

−2.316 + 1.347q−1

1− q−1

 .

If the same dataset is used for MIMO VRFT design, the
following controller is obtained instead:

KV RFT (q−1) =

 0.2079 + 0.06967q−1

1− q−1

0.4494− 0.3516q−1

1− q−1

19.13− 18.56q−1

1− q−1

−3.145 + 2.241q−1

1− q−1

 .

Notice that the above KV RFT is slightly different from
the one given in Formentin et al. (2012). This is due

to the fact that the currently employed dataset uses
different realizations of noise and inputs from the ones
in Formentin et al. (2012). The reason is that the noise
realizations and the input leading to the controller tuned
in Formentin et al. (2012) cannot be used in the new
approach. Therefore, to establish a fair comparison with
the controller of Formentin et al. (2012) a different set
of data, like the one employed in this section, needs to
be used. Nonetheless, it should also be noticed that the
quality of the step response of KV RFT is the same of
that obtained in Formentin et al. (2012) in terms of
overshoot, performance in channel decoupling, settling
time and overall shape.
A closed-loop noiseless experiment with the controller
given by the proposed approach and the one returned
by MIMO VRFT is illustrated in Figure 1. Notice that
both the controllers yield good performance after being
tuned with a single set of I/O data collected in open-loop
operation.
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r
M
proposed approach
MIMO VRFT

Fig. 1. Comparison of controllers tuned with the proposed
method and with MIMO VRFT on noisy open-loop
data and then applied in closed loop in noise-free
context. Reference signals (dotted), ideal response
(dashed) and achieved responses: MIMO VRFT con-
troller (dash-dotted) and proposed approach (solid).

However, since MIMO VRFT returns only an approxi-
mated solution of Problem 2 (due to the fact that the
optimal filter cannot be computed), the matching of M is
less accurate than that given by the proposed approach,
which is instead asymptotically optimal. In this example,
this is especially visible in the coupling between the first
input and the second output.
To give an overview of the data-driven solutions for mul-
tivariable control, consider now the performance of the
above controllers together with the ones given by IFT and
ICbT for the same example. In particular, Hjalmarsson
(1999) provides, after 6 iterations and 30 experiments, the
IFT controller

KIFT (q−1) =

 0.248− 0.03q−1

1− q−1

0.38− 0.199q−1

1− q−1

16.47− 15.91q−1

1− q−1

0.063− 0.054q−1

1− q−1


whereas Miskovic et al. (2007) gives, after 8 iterations and
8 experiments, the ICbT controller
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Table 1. Achieved cost J and MSE for differ-
ent data-driven methods.

proposed method MIMO VRFT ICbT IFT

J (×10−2) 3.9 4.1 3.7 8.1

MSE 0.189 0.257 0.089 0.945

KICbT (q−1) =

 0.3636− 0.09866q−1

1− q−1

0.3653− 0.2691q−1

1− q−1

18.69− 18.16q−1

1− q−1

−3.453 + 2.652q−1

1− q−1

 .

In Table 1, the cost functions (5b) for the closed-loop
system with each controller are reported.
To better appreciate the differences between the methods,
the mean squared errors

MSE =
1

Ncl

Ncl∑
t=1

∥∥y(t)−M(q−1)r(t)
∥∥2

are also computed over different noiseless step tests of the
type in Figure 1 and reported in Table 1. In this expression
of MSE, r(t) denotes the step excitation, ∥·∥ denotes the
Euclidean norm and Ncl is the number of samples of the
closed-loop step test.

From the above results, it is clear that ICbT is the best
method (IFT ended up with a local minimum), but the
proposed approach allows one to reduce the MSE of 26%
with respect to the only other non-iterative solution, i.e.,
MIMO VRFT.

In terms of hints for the user, this means that, in case of
costly experiments, the proposed solution seems to be the
best choice, whereas, in case of cheap data collection, the
proposed method can still be useful as an initial guess to
start the iterative procedure of ICbT.

7. CONCLUSIONS

In this paper, a data-driven method for multivariable con-
troller design has been presented. The method does not re-
quire the physical modeling of the process to control and is
suited for fixed-parameterization coupled controllers. Sim-
ple least squares techniques based on instrumental vari-
ables are sufficient to obtain a consistent estimate of the
optimal controller. Unlike the state of the art method for
non-iterative data-driven MIMO control design, namely
MIMO VRFT, the proposed method does not rely on a
suboptimal filter, but it is asymptotically exact. Due to
this fact, the accuracy of the closed-loop model matching
can be enhanced, as illustrated on a benchmark simulation
example.
Future work will be devoted to the optimal selection of
the reference model and experimental validation of the
proposed approach.
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