1 Introduction

The model error Δ is of vital importance to guarantee robustness of feedback controlled systems. In robust control, a model set \mathcal{P} is used to design a controller: its ‘location’ is set by a nominal model \hat{P}, while its ‘size’ can e.g. be determined by the model uncertainty $\|\Delta\|_{\infty}$. On the one hand, \mathcal{P} has to include the actual plant behavior P_0 for performance and stability guarantees, but on the other hand, an overly large set results in a conservative controller.

Different model-error-modeling methods exist, but each has its own pitfalls. A full parametric approach entails a model selection step that is difficult for complex plants. Frequency-response-based methods don’t need such a step but can underestimate Δ significantly [1]. This is mainly due to the presence of sharp peaks in $\Delta(\omega)$, which can easily be missed when the frequency resolution is limited (see e.g. Figure 1). Such an underestimated $\|\Delta\|_{\infty}$ results in overly optimistic controller designs.

2 The Local Rational Method (LRM)

The Local Rational Method (LRM) [2] estimates a Frequency Response Function (FRF) by exploiting the smoothness of the FRF. The smooth FRF $P(\omega_k)$ and the leakage/transient contribution $T(\omega_k)$ are captured as low-order rational functions around every measured frequency ω_k:

$$P(\omega_k + \delta) = \frac{\sum_{i=0}^{N_b} b_i(k) \delta^i}{1 + \sum_{i=1}^{N_a} a_i(k) \delta^i}, \quad (1a)$$

$$T(\omega_k + \delta) = \frac{\sum_{i=0}^{N_r} t_i(k) \delta^i}{1 + \sum_{i=1}^{N_a} a_i(k) \delta^i}, \quad (1b)$$

The coefficients $b_i(k)$, $a_i(k)$ and $t_i(k)$ are fitted to the known system input $U(\omega_k)$ and measured output $Y(\omega_k)$ spectra by considering $Y(\omega) = P(\omega)U(\omega) + T(\omega)$ in a small bandwidth around each frequency ω_k. The more widespread Local Polynomial Method (LPM) [3] can be regarded as a specific case of the LRM with $a_i = 0$ imposed.

3 Application

While the LRM can estimate the FRF of a plant $P(\omega_k)$ and an error system $\Delta(\omega_k)$, with reduced leakage, its local models (1) form an untapped resource. Here, we focus on the error system Δ and its \mathcal{H}_{∞} norm, measured from an industrial Active Vibration Isolation System (AVIS). By interpolating neighboring local models (1), $\Delta(\omega)$ can be estimated in-between the observed frequency bins ω_k. For estimating $\|\Delta(\omega)\|_{\infty}$ in specific, this scheme amounts to retaining the largest amplitude of the relevant local models.

This LRM-interpolation [4] approach yields similar results on a sparse frequency grid as the LPM estimated on denser frequency grids. $\Delta(\omega)$ is captured very well by the interpolation as shown in Figure 1. Moreover, the estimate of $\|\Delta\|_{\infty}$ is improved significantly. This allows us to design robust controllers that are more reliable, without increasing the measurement time.

![Figure 1: Contrary to the LPM (- - -), the LRM (---) is able to capture sharp resonances well in the measured Δ of an AVIS. Interpolating the LPM (-----), obviously, cannot mend this. The interpolated LRM (-----) agrees with a much denser frequency grid (---). Consequently, the estimated $\|\Delta\|_{\infty}$ is improved by 7.5 dB.](image)

References

