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Abstract—Numerical aspects are of central importance in
identification and control. Many computations in these fields
involve approximations using polynomial or rational functions
that are obtained using orthogonal or oblique projections. The
aim of this paper is to develop a new and general theoretical
framework to solve a large class of relevant problems. The
proposed method is built on the introduction of bi-orthonormal
polynomials with respect to a data-dependent bi-linear form. This
bi-linear form generalises the conventional inner product and
allows for asymmetric and indefinite problems. The proposed
approach is shown to lead to optimal numerical conditioning
(κ = 1) in a recent frequency-domain instrumental variable
system identification algorithm. In comparison, it is shown
that these recent algorithms exhibit extremely poor numerical
properties when solved using traditional approaches.

I. INTRODUCTION

Applications of system identification and control often in-
volve numerical computations. The accuracy of these com-
putations determines the quality of the resulting model or
controller. This has led to considerable research to develop
numerically reliable algorithms, see, e.g., [38] and [8], [4]
for a general overview. Many computations involve weighted
least-squares type problems for systems that are parametrized
in terms of (vector) polynomials or rational forms, where
orthogonal or oblique projections play a central role.

In the field of system identification, weighted nonlinear
least-squares criteria are particularly common, see [29]. Estab-
lished identification algorithms include [26], the SK-iteration
[34], and the Gauss-Newton iteration [1], which (iteratively)
compute the least-squares solution to a linear systems of
equations, for polynomial models or rational parametrizations.
Although conceptually straightforward, the associated numer-
ical conditioning is often extremely poor, as is evidenced by
the developments in [1], [18], [28], [41], [44], which provide
partial solutions for ill-conditioning. In [30], [37], [21], a
fundamentally different solution strategy is pursued. The strat-
egy is based upon the construction of orthogonal polynomials
with respect to a data-dependent inner product, which directly
provides the solution to the approximation problem in terms
of polynomials. Essentially, this yields optimal conditioning
of the associated linear system of equations, i.e., κ = 1.

Besides developments in view of reliable algorithms that
involve least-squares type solutions, recently, more general
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algorithms with favorable convergence properties have been
developed in, e.g., system identification. Indeed, the commonly
used SK-algorithm [34] often does not converge to a minimum
of the underlying nonlinear least-squares criterion, as is proved
in [42]. In [3], a system identification algorithm is presented
that guarantees convergence to a minimum of this criterion
by introducing an algorithm that has the interpretation of
an instrumental variable method [35]. From a computational
perspective, the approach in [3] involves a more general
polynomial approximation problem, since the algorithms in
[26], [34], [1] are recovered as a special case.

Although recent generalizations of algorithms for weighted
nonlinear least-squares problems have improved certain as-
pects, including the convergence properties in system identifi-
cation algorithms, the solution strategy towards optimal con-
ditioning by means of the orthogonal polynomial framework
in [30], [37], [21] is not applicable in this general situation.
In particular, in the general case, the polynomial approxima-
tion problem has an asymmetric and indefinite form. As a
consequence, the idea of tailoring the inner product, which
is the essential step in [30], [37], [21], cannot be applied,
since a tailored inner product requires symmetry and positive-
definiteness. The aim of this paper is to develop a theory that
addresses the general situation by accounting for asymmetry
and indefiniteness of the approximation problem. The key step
taken in this paper is to replace the conventional inner product
by a new bi-linear form, involving two sets of polynomials.
In terms of classical algorithms, the proposed framework can
be interpreted as achieving optimal conditioning (κ = 1) for
the general situation.

The main contribution of this paper is the development
of a new polynomial theory for solving a general class of
problems that are encountered in recent algorithms in the field
of identification and control, including those in time-domain
identification [46], [35], [13], frequency-domain identification
[3], and control [27]. In particular, it is shown that a general
class of polynomial approximation problems, underlying the
aforementioned applications, involves an asymmetric form. As
a first contribution, it is shown that by selecting bi-orthonormal
polynomial bases with respect to a data-dependent bi-linear
form associated with such a polynomial approximation prob-
lem, i) the optimal approximant of a certain degree is
equal to a scaled version of the right basis polynomial of
corresponding degree, which has as an immediate effect that
ii) the linear system of equations that results after substitution
of the polynomial bases has optimal numerical conditioning. In
addition, it is proved that this result cannot be obtained through
the use of a single polynomial basis, as is considered in [30],
[37], [21], since the latter only apply to the symmetric and
positive definite case. For the construction of bi-orthonormal

1



polynomial bases, the associated oblique projection in linear
algebra is investigated, which is defined through two Krylov
subspaces. Bi-orthonormal bases of these Krylov subspaces
are shown to directly lead to the desired polynomials. Finally,
the basic principle for computing these bases is demonstrated
through an explicit algorithm for bi-orthonormalization on
the real line. In the present paper, fundamental theory and
properties of the framework are developed. Preliminary results
of this research appear in [20] and [19, Chap. 2]. Further
applications to specific identification problems are developed
in [19, Chap. 3], [22], where a vector polynomial framework
is employed.

This paper is organized as follows. In Sect. II, the polyno-
mial approximation problem and corresponding linear algebra
formulation associated with the algorithm in [3] is given,
which includes the conventional polynomial approximation
problem associated with the algorithm in [34] as special
case. The main result of this paper is given in Sect. IV,
which explains the role of bi-orthonormal polynomials in the
computation of accurate solutions to the general polynomial
approximation problem. In Sect. V, it is shown that bi-
orthonormal polynomials can be constructed efficiently using
three-term-recurrence relations. In Sect. VI, an algorithm to
construct real-valued bi-orthonormal polynomials is provided.
In Sect. VII, an example is given that confirms optimal
numerical conditioning for the general class of polynomial
approximation problems. Conclusions are drawn in Sect. VIII.
Finally, all proofs are presented in Appendix B.

Implementation guideline. Readers interested in directly
applying the approach in this paper are suggested to formulate
the problem in terms of (1). Next, compute the tridiagonal ma-
trix in (45) using Algorithm 39. Then, compute bi-orthonormal
bases using the three-term-recurrence relations in (48)–(49).
Finally, the desired solution immediately follows from (24).

II. POLYNOMIAL APPROXIMATION:
APPLICATIONS IN IDENTIFICATION AND CONTROL

A. Problem formulation

The aim of this paper is to determine the solution f(ξ, θ)
to a type of polynomial equality of the form

m∑
k=1

∂g(ξk, θ)

∂θT

H

wH2k w1k f(ξk, θ) = 0. (1)

where w1k, w2k ∈ C1×q are the weights specified by the
problem at hand. Furthermore, f(ξ, θ), g(ξ, θ) ∈ Cq×1[ξ] are
q-dimensional vector-polynomials:

f(ξ, θ) =

n∑
j=0

ϕj(ξ) θj , (2)

g(ξ, θ) =

n−1∑
j=0

ψj(ξ) θj , (3)

where ϕj(ξ), ψj(ξ) ∈ Cq×q[ξ] are q-dimensional block-
polynomials in the variable ξ ∈ C with nodes ξk, k =
1, . . . ,m. Furthermore, θj ∈ Cq×1, j = 0, 1, . . . , n are
parameter vectors.

An example of a commonly used block-polynomial basis is
the monomial basis

φmon,j(ξ) = ξj Iq . (4)

In this paper, this monomial basis is used for comparison,
as more general choices for ϕ(ξ) and ψ(ξ) are proposed.
Note that it is immediate to express general block-polynomials
ϕj(ξ), ψj(ξ) in terms of φmon,i(ξ), i = 0, 1, . . . , j.

The following assumptions are imposed throughout to fa-
cilitate the presentation.

Assumption 1. The nodes ξk, k = 1, . . . ,m, are distinct.

Assumption 2. The weights w1k, w2k, k = 1, . . . ,m, are non-
zero.

Note that in the presence of weights that are equal to zero,
(1) can be reformulated as an equivalent sum of non-zero
elements representing a smaller set of nodes.

Assumption 3. The degree n of the vector polynomial f(ξ, θ)
that forms the solution to (1) is assumed to be smaller than
the number of nodes m.

Assumption 4. Both ϕj(ξ) and ψj(ξ) are of strict degree j,
with upper triangular leading coefficient matrix, i.e.,

ϕj(ξ) = ξj sjj + . . . + ξ sj1 + sj0, (5)

ψj(ξ) = ξj tjj + . . . + ξ tj1 + tj0, (6)

sj0, sj1, . . . , sjj , tj0, tj1, . . . , tjj ∈ Cq×q , where sjj , tjj are
non-singular upper triangular matrices.

Assumption 5. Given certain polynomial bases ϕj(ξ), ψj(ξ),
the parameter vectors θj ∈ Cq×1, j = 0, 1, . . . , n in (2)–
(3) form the variable θ in (1) that is to be determined. To
avoid the trivial solution θ = 0, additional constraints need
to be imposed. A common solution is to enforce a subset of
polynomials to be monic [9]. In the notation of this paper, this
amounts to

θn = s−1
nn [ 1 · · · 1︸ ︷︷ ︸

q1

0 · · · 0︸ ︷︷ ︸
q2

]T, (7)

where q = q1 + q2, the sum in (2) reduces to

f(ξ, θ) =

n−1∑
j=0

ϕj(ξ) θj + fn(ξ), (8)

with pre-determined vector-polynomial

fn(ξ) := ϕn(ξ)θn = [ ξn · · · ξn︸ ︷︷ ︸
q1

0 · · · 0︸ ︷︷ ︸
q2

]T + (9)

n−1∑
i=0

ξi sni s
−1
nn [ 1 · · · 1︸ ︷︷ ︸

q1

0 · · · 0︸ ︷︷ ︸
q2

]T.

Generalization to other constraints follows similarly.
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B. Applications in system identification and control

The class of polynomial approximation problems (1) is
commonly encountered in system identification and control.
Indeed, in frequency-domain identification, see [29], the form
(1) is directly obtained in case the recent algorithm in [3]
is used, as is shown in Appendix A, Alg. 43. Furthermore,
(1) is inherently connected with instrumental variables (IV)
identification, see [46], [35], [13]. Essentially, the parameters
θ of a model identified by IV methods follow from solving a
system of equations of the form

m∑
t=1

ζ(t)ε(t, θ) = ζT ε(θ) = 0.

This system of equations can be reformulated equivalently in
the frequency-domain as

ζTFHFε(θ) = ZTE(θ) =

m∑
k=1

Z(zk)E(zk, θ) = 0, (10)

by virtue of the fact that the Discrete Fourier Transform matrix

F :=
1√
m


1 1 1 . . . 1
1 ωm ω2

m . . . ωm−1
m

1 ω2
m ω4

m . . . ω
2(m−1)
m

...
...

...
. . .

...
1 ωm−1

m ω
2(m−1)
m . . . ω

(m−1)(m−1)
m

,

ωm := e−j
2π
m , is a unitary matrix. The equivalent frequency-

domain formulation (10) of IV-methods is of the form (1).
Finally, the form (1) is encountered in some control design
approaches, such as iterative controller tuning based on corre-
lations [27].

Note that the general form (1) encompasses many problems
involving a standard least-squares problem, as is formalized
in the following remark.

Remark 6. A special case of (1) is the conventional least-
squares polynomial approximation problem

min
θ
‖w1 f(ξ, θ) ‖22 , (11)

where

‖w1 f(ξ, θ)‖22 :=

m∑
k=1

f(ξk, θ)
H wH1k w1k f(ξk, θ).

The first order necessary and sufficient condition for optimality
in (11) reads

m∑
k=1

∂f(ξk, θ)

∂θT

H

wH1k w1k f(ξk, θ) = 0. (12)

As before, the degree constraint (7) is imposed, i.e., (8) holds.
Then, (12) is a special case of (1), where ψj(ξ) = ϕj(ξ),
j = 0, 1, . . . , n− 1 and w2k = w1k, k = 1, . . . ,m.

Least-squares polynomial approximation (11) is used in fre-
quently applied identification algorithms such as [26] and the
SK-iteration [34]. The connection between these algorithms
and (11) is further established in Appendix A, Alg. 44. In
addition, similar connections to the Gauss-Newton iteration,

see [1], exist. In this paper, the general polynomial approxi-
mation problem (1) is considered, which encompasses (11) as
a special case.

As a final comment, it is often desired in both identification
and control to work with models that have real-valued parame-
ters. This can be directly enforced, as is shown in the following
remark for frequency-domain approximation problems.

Remark 7. Note that the partial derivative in (1) should be
interpreted as in [29, Appendix 7.X], since θ is complex-
valued. On the other hand, in common frequency-domain
polynomial approximation problems, nodes are selected on
the imaginary axis, i.e., ξk = jωk, ωk ∈ (0,∞), or on
the unit circle, i.e., ξk = ejθk , θk ∈ (0, π). Many systems
have real-valued coefficients, hence a real-valued solution
f(ξ, θ) ∈ Rq×q[ξ] to (1) is desired. To that end, real-
valued basis polynomials ϕj(ξ), ψj(ξ) ∈ Rq×q[ξ] should be
selected. Furthermore, (1) should then be formulated in terms
of complex-conjugate nodes and weights, i.e., ξk = ξ∗(k−1)

and w1k = w∗1(k−1), w2k = w∗2(k−1), k = 2, 4, . . . ,m. Then,
(1) can be directly recast as a real-valued problem, see also
[29, Sect. 13.8], in which case the results in this paper yield
θj ∈ Rq×1, j = 0, 1, . . . , n, and hence f(ξ, θ) ∈ Rq×q[ξ].

III. NUMERICAL CONDITIONING OF POLYNOMIAL
APPROXIMATION PROBLEMS

A commonly pursued approach to solve the polynomial
approximation problem (11) and (1) is to

1) Select basis polynomials ϕ, ψ.
2) Formulate and solve as a linear algebra problem.
In this section, this solution approach is investigated, as it

provides a means to assess the associated numerical condi-
tioning. It is emphasized that the main contribution of this
paper lies in selecting a certain polynomial basis in Step 1,
that renders superfluous Step 2 or equivalently leads to a linear
systems of equations with condition number 1.

A. Reformulation as a linear algebra problem

If ϕj(ξ) and ψj(ξ) are pre-selected, then (1) is equivalent
to the linear system of equations

(ΨHWH
2 W1 Φ) θ = −ΨHWH

2 W1 Φnθn , (13)

with polynomial matrices

Φ =


ϕ0(ξ1) ϕ1(ξ1) . . . ϕn−1(ξ1)
ϕ0(ξ2) ϕ1(ξ2) . . . ϕn−1(ξ2)

...
...

...
ϕ0(ξm) ϕ1(ξm) . . . ϕn−1(ξm)

, Φn =


ϕn(ξ1)
ϕn(ξ2)

...
ϕn(ξm)

, (14)

Ψ =


ψ0(ξ1) ψ1(ξ1) . . . ψn−1(ξ1)
ψ0(ξ2) ψ1(ξ2) . . . ψn−1(ξ2)

...
...

...
ψ0(ξm) ψ1(ξm) . . . ψn−1(ξm)

, (15)

parameter vector θ =
[
θT0 θT1 . . . θ

T
n−1

]T
, and weight matrices

W1 =

 w11
w12

. . .
w1m

, W2 =

 w21
w22

. . .
w2m

. (16)
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Here, Φ,Ψ ∈ Cmq×nq , Φn ∈ Cmq×q , θ ∈ Cnq×1, and
W1,W2 ∈ Cm×mq . Note that θn is a result of (7).

Assumption 8. In (13), ΨHWH
2 W1 Φ is assumed to be a

regular matrix.

Assumption 8 is non-restrictive. Essentially, it guarantees
that a unique solution to (1) exists. Clearly, this depends
on w1k, w2k and the selected degree n of the polynomials
f(ξ, θ), g(ξ, θ) in the polynomial approximation problem. This
aspect is well-known and is analyzed in detail in [5] for the
case that w2k = w1k.

In terms of linear algebra, (13) represents an oblique, i.e.,
non-orthogonal, projection, see [33, Sect. 1.12.3, Sect. 5.2.3].
For the pre-selected ϕj(ξ) and ψj(ξ), (13) is a linear system
of equations that can be solved for θ. The accuracy of the
solution θ strongly depends on the numerical conditioning of
the system of equations. In Sect. III-B, it is shown that this
conditioning can be extremely poor for commonly used basis
functions.

Before proceeding to the numerical properties, the special
case in Remark 6 is investigated.

Remark 9. For the special case in Remark 6, (12) can be
written as an orthogonal projection

(ΦHWH
1 W1 Φ) θ = − ΦHWH

1 W1 Φn θn. (17)

Hence, (17) also is recovered as a special case of (13) by
setting Ψ = Φ and W2 = W1.

B. Numerical accuracy of the solution

The accuracy of the solution of (13) and (17) depends on the
numerical accuracy. A standard approach to characterize the
worst-case propagation of numerical round-off errors in solv-
ing (13) and (17) is the condition number, see [15, Sect. 5.3.7]
for a detailed explanation. In particular, κ(ΨHWH

2 W1 Φ)
determines the accuracy of the solution θ to (13).

The weight matrices W1 and W2 typically follow from the
problem data, e.g., the measured data in system identification.
As a result, the only degree of freedom in the condition
number κ(ΨHWH

2 W1 Φ) is the choice of the polynomial
bases ϕj(ξ) and ψj(ξ). Commonly, the monomial basis (4)
is chosen, i.e.,

ϕj(ξ) = ψj(ξ) = φmon,j(ξ), j = 0, 1, . . . , n− 1.

In many applications, including frequency-domain system
identification, this choice of basis functions typically leads to
κ(ΦHmonW

H
2 W1 Φmon) � 1, i.e., a severely ill-conditioned

system of equations (13). This is confirmed in real-life identifi-
cation applications, where no accurate models can be obtained
with standard machine precision, see [6].

Remark 10. The orthogonal projection (17) constitutes the
normal equations associated with the system of equations

W1 Φ θ = − W1 Φn θn. (18)

Instead of solving (17), it is generally preferable to deter-
mine the least-squares solution to (18) by means of a QR-
factorization, see, e.g., [15, Chap. 5]. Indeed, this reduces

the sensitivity to numerical errors, since the condition number
κ(W1Φ) associated with (18) is quadratically smaller than
κ(ΦHWH

1 W1Φ) = κ(W1Φ)2 associated with (17).

The lefthand side of the oblique projection (13) is not a
positive definite form, in contrast to (17). Consequently, a
similar approach as in Remark 10 cannot be used to enhance
the conditioning of (13). Hence, the conditioning associated
with (13) generally is significantly worse compared to (17)-
(18), since typically κ(ΨHWH

2 W1 Φ) � κ(W1 Φ). This
confirms the need to develop numerically reliable solutions
to (1).

In the next section, the solution strategy in this paper is
outlined by showing that a careful selection of the polynomial
basis that is tailored to the problem data W1 and W2 is
essential to achieve high numerical accuracy of the solution
to (17) and (13).

C. Selection of a data-dependent polynomial basis

The key observation in Sect. III-B is that the conditioning
associated with (1) for pre-specified bases depends on both the
problem-specific data and the selected bases. As a result, any
standard polynomial basis, including monomial, Chebyshev,
and Legrendre basis, can potentially lead to a badly condi-
tioned linear system of equations (13) or (17), respectively,
for certain problem-specific data.

The central idea is to connect problem-specific data to the
selection of the basis to enhance numerical conditioning. For
the specific class of least-squares polynomial approximation
problems in Remark 6 and Remark 9, a similar approach has
been pursued in [6], where the problem-specific data W1 is
explicitly used in the basis. In particular, for given ξk and
w1k in (12), the inner product

〈〈ϕi(ξ), ϕj(ξ)〉〉 :=

m∑
k=1

ϕj(ξk)H wH1k w1k ϕi(ξk), (19)

is considered, see also [10], [45]. The result (19) constitutes a
generalization towards block-polynomials of a data-dependent
discrete inner product for vector-polynomials, see also [7,
Sect. 1.1–1.2] and Remark 14 in Sect. IV-B, for a further
explanation. It is immediate that 〈〈ϕi(ξ), ϕj(ξ)〉〉 constitutes
the q× q -block-element (j, i) of the matrix ΦHWH

1 W1 Φ
in (17). Hence, when selecting a block-polynomial basis that
is orthonormal with respect to (19), the following key results
are achieved.

i) The optimal approximant f(ξ, θ?) to (11) immediately
follows from the highest degree basis polynomial ϕn(ξ),
viz.

f(ξ, θ?) = fn(ξ) = ϕn(ξ) θn , (20)

see also (9).

ii) The associated system of equations (18) has κ(W1Φ) = 1.
Equivalently, κ(ΦHWH

1 W1Φ) = 1 in (17).

For a proof of the results above, see, e.g., [5] and [30],
[11]. Note that Result (i) implies that (17) or (18) need not be
solved explicitly anymore.
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Bi-linear form

Inner product

Indefinite
inner product

Fig. 1. Venn-diagram corresponding to Def. 11 and Lem. 13, which indicates
special sub-classes of a general bi-linear form.

Note that the inner product (19) relies on symmetry and
positive definiteness. As a result, it cannot be used for the
general form (1). Thus, the fundamental difference of (1)
compared with (12) is the lack of symmetry and positive
definiteness, as is shown in detail in the forthcoming section.
The key idea in this paper is a new bi-linear form that replaces
(19), enabling a result for the polynomial approximation
problem (1) that resembles Result (i) and (ii).

IV. BI-ORTHONORMAL BASIS POLYNOMIALS FOR SOLVING
OBLIQUE PROJECTIONS

In this section, the main result of this paper is presented.
First, in Sect. IV-A, a new bi-linear form is introduced that
replaces the earlier considered inner product (19). Then, in
Sect. IV-B, it is shown that by formulating the polynomial
approximation problem (1) using two polynomial bases that
are bi-orthonormal with respect to this bi-linear form, optimal
numerical conditioning is achieved. Finally, in Sect. IV-C, the
relation between asymmetry and bi-orthonormal polynomials
is explored.

A. Relaxations of the conventional inner product

In this section, the notion of an inner product is extended
towards a more general bi-linear form [·, ·] that plays a central
role in the remainder of this paper. The following definition
unifies related concepts in the literature.

Definition 11. Let V be a vector space and let F be a field
of scalars. For a mapping [·, ·] : V × V 7→ F, consider the
following four properties for all x, y, z ∈ V and all scalars
α, β ∈ F.

i) Linearity argument 1: [αx+ βy, z] = α[x, z] + β[y, z].
ii) Non-degeneracy: if [x, y]= 0 ∀ y ∈ V, then x= 0.

iii) Conjugate symmetry: [x, y] = [y, x]∗.
iv) Non-negativity: [x, x] ≥ 0 .

Then, [·, ·] defines
(a) an inner product if Prop.(i)-(ii)-(iii)-(iv) hold,
(b) an indefinite inner product if Prop. (i)-(ii)-(iii) hold,
(c) a bi-linear form if Prop. (i)-(ii) hold.

In this paper, the vector space V in Def. 11 represents either
an Euclidian space or a space of polynomials. In addition, F
represents either the real numbers R or complex numbers C.

From Def. 11, the bi-linear form includes the indefinite
inner product as a special case. In turn, the indefinite inner

product includes the conventional inner product as a special
case. These relations are further illustrated in Fig. 1.

Remark 12. The non-degeneracy property for inner products
is often defined in a different but equivalent manner. In
particular, if Prop. (iv) holds, then Prop. (ii) is equivalently
given by: [x, x] = 0 ⇐⇒ x = 0. Thus, the definition
of the inner product in Def. 11 corresponds with, e.g., [24,
Sect. 3.1]. Similarly, the definition of the indefinite inner
product corresponds with, e.g., [14, Sect. 2.1].

In order to solve (1), its asymmetric and indefinite character
is explicitly addressed, as motivated in Sect. III-C. Therefore,
the following data-dependent form is introduced.

Lemma 13. Let distinct nodes ξk ∈ C, k = 1, . . . ,m, and
corresponding weights w1k, w2k ∈ C1×q be given. For vector-
polynomials ϕ

κ
(ξ), ψ

`
(ξ) ∈ Cq×1[ξ], κ, ` = 0, 1, . . . , (n −

1)q, consider the data-dependent form:

[ϕ
κ
(ξ), ψ

`
(ξ)] :=

m∑
k=1

ψ
`
(ξk)H wH2k w1k ϕκ(ξk) . (21)

(a) If w2k = w1k, k = 1, . . . ,m, then [ϕ
κ
(ξ), ϕ

`
(ξ)] defines

a data-dependent inner product.

(b) If wH2kw1k = wH1kw2k, k = 1, . . . , m, then
[ϕ

κ
(ξ), ϕ

`
(ξ)] defines a data-dependent indefinite inner

product.

(c) For general w1k, w2k, k = 1, . . . ,m, [ϕ
κ
(ξ), ψ

`
(ξ)]

defines a data-dependent bi-linear form.

Proof: Follows by verifying the properties of an inner product,
indefinite inner product, and bi-linear form in Def. 11. �

Remark 14. The form 〈〈ϕi(ξ), ϕj(ξ)〉〉 in (19) is a natural
extension of Lemma 13-(a), which is defined for vector-
polynomials, towards block-polynomials ϕi(ξ) ∈ Cq×q[ξ],
i = 0, 1, . . . , n − 1 as used in (2). In particular, let ϕi(ξ)
be decomposed into individual vector-polynomials, i.e.,

ϕi(ξ) = [ϕ
(i+0)

(ξ), ϕ
(i+1)

(ξ), . . . , ϕ
(i+q)

(ξ)].

Then, element (e1, e2) of 〈〈ϕi(ξ), ϕj(ξ)〉〉 is given by

〈ϕ
κ
(ξ), ϕ

`
(ξ)〉 :=

m∑
k=1

ϕ
`
(ξ)HwH1k w1k ϕκ(ξ), (22)

where κ = i + e2 and ` = j + e1. Indeed, (19) is consistent
with the theory in [7, Sect. 1.1–1.2] and [10], [45].

Note that in the general case in Lemma 13-(c), the vector-
polynomial bases ϕ(ξ) and ψ(ξ) may be distinct. In the next
section, it is shown that by choosing polynomial bases that
are bi-orthonormal with respect to (21), a solution of the
polynomial equality (1) similar to (20) is obtained, which
facilitates an accurate numerical computation.

B. Achieving optimal numerical conditioning through the use
of bi-orthonormal polynomial bases

The aim in this paper is to solve the polynomial equality (1)
through a polynomial approach that inherently has optimal nu-
merical conditioning. As motivated in Sect. III-C, the selection
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of the basis in which the problem is formulated is a crucial
step that determines the solution accuracy. For the general
problem (1), there is freedom to select two polynomial bases
ϕj(ξ) and ψ(ξ), which constitute the polynomials f(ξ, θ) and
g(ξ, θ) in (2)–(3), respectively. The following definition is at
the basis of subsequent developments.

Definition 15. Let ξk ∈ C and w1k, w2k ∈ C1×q ,
k = 1, . . . ,m, be given. In addition, let ϕi(ξ), ψj(ξ) ∈
Cq×q[ξ], i, j = 0, 1, . . . , n. Then, ϕi(ξ), ϕj(ξ) are called bi-
orthonormal block-polynomials (BBPs) with respect to (21) if:

[[ϕi(ξ), ψj(ξ)]] :=

m∑
k=1

ψj(ξk)HwH2k w1k ϕi(ξk) = δij Iq. (23)

A key new result of this paper is the selection of two
distinct, bi-orthonormal polynomial bases. By formulating the
polynomial equation (1) in bi-orthonormal polynomial bases,
the following remarkable main result is obtained.

Theorem 16. Consider (1), where f(ξ, θ), g(ξ, θ) defined in
(2)–(3) are formulated in polynomial bases ϕi(ξ), ψj(ξ) ∈
Cq×q[ξ], i, j = 0, 1, . . . , n that satisfy (23). Then, the solution
f(ξ, θ) to (1) is given by:

f(ξ, θ) = fn(ξ) = ϕn(ξ) θn, (24)

where fn is defined in (9).

Proof: Consider the reformulation of (1) as the oblique
projection (13), where the matrix ΨHWH

2 W1 Φn ∈ Cnq×q
is of importance here. Since the q × q-block-element (j, 1) of
this matrix is equal to [[ϕn(ξ), ψj(ξ)]], it follows by virtue of
orthogonality of ϕn(ξ) and ψj(ξ), j = 0, 1, . . . , n− 1, that

ΨHWH
2 W1 Φn = 0. (25)

As a consequence of (25), the solution for the parameter vector
θ =

[
θT0 θT1 . . . θTn−1

]T
, in (13) equals θ = 0. Therefore, (2)

reduces to (24), where θn has been selected according to (7)
to impose a degree constraint on f(ξ, θ). �

Theorem 16 implies that, given bi-orthonormal polynomial
bases with respect to the data-dependent bi-linear form (21),
the solution to the polynomial equation (1) is immediate. In
terms of the associated linear system of equations (13), the
following result is obtained.

Theorem 17. Consider (13). Let ϕi(ξ), ψj(ξ) ∈ Cq×q[ξ],
i, j = 0, 1, . . . , n be bi-orthonormal with respect to (21),
cf. Def. 15. Then,

ΨHWH
2 W1 Φ = I, (26)

hence, κ(ΨHWH
2 W1 Φ) = 1.

Proof: Follows directly from bi-orthonormality of
ϕi(ξ), ψj(ξ) ∈ Cq×q[ξ], i, j = 0, 1, . . . , n, which can
be rewritten in matrix form as (26). �

In conclusion, selection of appropriate, problem specific
polynomial bases yields an optimally conditioned linear alge-
bra problem. In contrast, the use of different polynomial bases
generally leads to κ(ΨHWH

2 W1 Φ) � 1, see Sect. V-B and
[6] for special case of orthonormal polynomials.

Through the use of BBPs, Thm. 16. reveals that (13)
need not be solved explicitly anymore. Thus, it remains to
construct the BBPs with respect to (21). Before presenting
the construction of these BBPs, the need for considering two
distinct polynomial bases instead of using a single one is
proved.

C. Connecting bi-orthonormality and asymmetry of the poly-
nomial approximation problem

In this section, it is shown that there are fundamental rela-
tions between the asymmetry of the polynomial approximation
problem (1) and bi-orthonormal polynomials. To facilitate the
presentation of the main ideas, attention is restricted to real-
valued polynomial approximation problems in this section.
Extensions for complex values follow along the same lines.

Assumption 18. In this section, ξk ∈ R, w1k, w2k ∈ R1×q ,
k = 1, . . . ,m. Furthermore, ϕi(ξ), ψj(ξ) ∈ Rq×q[ξ], i, j =
0, 1, . . . , n− 1.

To present the main results, it is convenient to relax the
notion of bi-orthonormality in Def. 15 to bi-orthogonality,
which is defined in matrix form as

ΨT W2W1 Φ = D, (27)

with D ∈ Rnq×nq a diagonal matrix. The main difference
with Def. 15 is thus a normalization step. Next, the form
(27) is used to show that it cannot be achieved for general
weights w1k 6= w2k, k = 1, . . . ,m with ψj(ξ) = ϕj(ξ),
j = 0, 1, . . . , n − 1. The following definition is used to
formulate the main result.

Definition 19. Let nonzero ξk ∈ R and w1k, w2k ∈ R1×q , k =
1, . . . ,m, be given. For i, j = 0, 1, . . . , n− 1, with n < m,
define

Sij =

m∑
k=1

ξ
(i+j)
k · (wT2kw1k − wT1kw2k) ∈ Rq×q.

Remark 20. If wT2kw1k is symmetric for all k = 1, . . . ,m,
i.e., wT2kw1k = wT1kw2k, then Sij = 0 ∀ i, j = 0, 1, . . . , n− 1.
A particular example hereof is obtained when w1k, w2k ∈ R
are scalar.

The following theorem is the main result of this section
and connects the asymmetry of the weights wT2kw1k to bi-
orthonormal polynomials.

Theorem 21. Let ξk ∈ R and w1k, w2k ∈ R1×q , k =
1, . . . ,m, be given and let W1, W2 ∈ Rm×mq be defined in
(16). Furthermore, let D ∈ Rnq×nq be a diagonal matrix.
Then, there exists a polynomial basis ϕj(ξ) ∈ Rq×q[ξ],
j = 0, 1, . . . , n−1 with corresponding matrix Φ defined in (14)
such that

ΦT WT
2 W1 Φ = D (28)

if and only if Sij = 0 ∀ i, j = 0, 1, . . . , n− 1.

Theorem 21 shows that i) for asymmetric weights wT2kw1k,
k = 1, . . . ,m, two distinct polynomial bases are required in
order to achieve bi-orthogonality with respect to the general
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bi-linear form (21), whereas ii) for symmetric positive definite
weights wT1kw1k, as encountered in the inner product (22), it
is possible to achieve orthogonality with a single polynomial
basis, since in that case Sij = 0 ∀ i, j = 0, 1, . . . , n − 1,
see Remark 20. In particular, the special case of symmetric
positive definite weights has been considered in [30], [5], [11],
[21], where orthonormal polynomials with respect to a data-
dependent inner product have been introduced to solve (11).

Finally, attention is turned to the specific class of indefinite
inner products, see Fig. 1. From Lemma 13-(b) it follows
that, while the bi-linear form (21) is symmetric in this case,
i.e., wT2kw1k = wT1kw2k, the matrices wH2kw1k, k = 1, . . . ,m
may be indefinite. Nevertheless, for this special sub-class
of the general bi-linear form it is possible to achieve the
results in Thm. 16 and Thm. 17 using a single polynomial
basis. Therefore, the definition of bi-orthonormality for block-
polynomials, see Def. 15, needs to be extended as follows.

Definition 22. Let ξk ∈ R and w1k, w2k ∈ R1×q , k =
1, . . . ,m, be given. Moreover, let wT2kw1k = wT1kw2k. Fi-
nally, let [[·, ·]] be defined in (23). Then, ϕi(ξ) ∈ Rq×q[ξ],
i = 0, 1, . . . , n are called orthonormal with respect to the
indefinite inner product (21) if

[[ϕi(ξ), ϕj(ξ)]] = δij Dij , (29)

where Dii = diag(±1, ±1, . . . ,±1) ∈ Rq×q .

In this definition of orthonormality for indefinite inner
products, see also [14, Sect. 2.2], the righthand side of (29)
accounts for the fact that the matrices wH2kw1k, k = 1, . . . ,m
may be indefinite. Indeed, by exploiting a polynomial basis
that obeys the orthonormality condition in Def. 22, both
Thm. 16 and Thm. 17 hold using a single basis, irrespective
of the indefinite character of (21).

In conclusion, the asymmetry of weights in (1) necessitates
the construction of two distinct polynomial bases. In the
remainder of this paper, the construction of bi-orthonormal
polynomial bases is considered in detail. This covers the case
of indefinite and standard inner products as a special case, see
Fig. 1. Thus, the developed theory covers these cases. Note
that by exploiting symmetry, the results for the special cases
may be simplified.

V. A THEORY FOR BI-ORTHONORMAL POLYNOMIALS

In this section a theory is developed for the construction
of bi-orthonormal polynomials. Starting from a linear algebra
perspective, in Sect. V-A, the oblique projection (13) is studied
in more detail, leading to a connection with two Krylov
subspaces in Sect. V-B. Next, in Sect. V-C, it is shown that bi-
orthonormal bases for these two Krylov subspaces are directly
connected with the bi-orthonormal polynomials that need to
be constructed. This finally leads to a derivation of three-
term-recurrence relations for bi-orthonormal polynomials in
Sect. V-D, in which the recurrence coefficients are connected
to given problem data.

A. Properties of the oblique projection
An oblique projection, see, e.g., [2, Sect. 3], [33, Sect. 5.2],

is characterized by two subspaces that define its range and

L

K

Fig. 2. Two projections of (•) onto subspace K: orthogonal projection (�)
and oblique projection (×) with residual orthogonal to subspace L.

null-space. As is illustrated in Fig. 2, a given point in space
is projected onto a subspace K, along a line orthogonal to a
subspace L. In other words, the residual is orthogonal to L.

By rewriting the oblique projection (13) in Sect. III-A as

ΨHWH
2 (W1 Φ θ + W1 Φn θn) = 0,

it is observed that, in view of (18),
1) the vector −W1 Φn θn is projected onto the subspace
K := span(W1 Φ), on which θ operates, and

2) the residual (W1 Φ θ + W1 Φn θn) is orthogonal to the
subspace L := span(W2 Ψ).

Remark 23. The oblique projector is given by the mapping
Pobl : −W1 Φn θn 7−→ W1 Φ θ, where, using (13),

Pobl = W1 Φ (ΨHWH
2 W1 Φ)−1 ΨHWH

2 . (30)

Clearly, P 2
obl = Pobl , and hence indeed is a projector.

The results from Sect. IV are now reinterpreted. Impor-
tantly, the oblique projector (30) is asymmetric, since (13)
is characterized by two distinct subspaces. To achieve optimal
numerical conditioning of (13), it is needed to account for this
asymmetry explicitly, which will be done by developing two
distinct bases for these subspaces.

In the special situation where K and L coincide, an orthog-
onal projection is obtained.
Lemma 24. A projector is orthogonal if and only if it is
Hermitian.

Proof: A proof is given in [33, Sect. 1.12.3]. �

In particular, K and L coincide if W2 = W1 and Ψ = Φ,
cf. Remark 9. Indeed, the resulting orthogonal projector

Porth = W1 Φ (ΦHWH
1 W1 Φ)−1 ΦHWH

1

is Hermitian. In this special situation, (13) reduces to the
orthogonal projection (17), for which optimal numerical con-
ditioning is attained with a single basis, cf. Sect. III-C.

B. Defining the oblique projection through Krylov subspaces

In this section, it is shown that due to an imposed degree
structure, K and L are Krylov subspaces. The following
simplifying assumption is made. However, the entire theory
can be extended to the general situation along similar lines.
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Assumption 25. To facilitate the presentation, q = 1 and
ξk, w1k, w2k ∈ R, k = 1, . . . ,m in the remainder of this
paper.

By virtue of the degree structure in Ass. 4, the polynomials
ϕj(ξ), ψj(ξ), j = 0, 1, . . . , n−1, in (5)–(6) can be expressed
as a linear combination of φmon,j(ξ) in (4), viz.

ϕj(ξ) =

j∑
k=0

sjk φmon,k(ξ), sjk ∈ R, k = 0, . . . , j,

ψj(ξ) =

j∑
k=0

tjk φmon,k(ξ), tjk ∈ R, k = 0, . . . , j,

where sjj , tjj are non-zero by assumption. As a result, Φ and
Ψ in (14)–(15) can be written as

Φ = V S, (31)
Ψ = V T, (32)

V =


1 ξ1 . . . ξ

n−1
1

1 ξ2 . . . ξ
n−1
2

...
...

...
1 ξm . . . ξn−1

m

S=

s0,0 . . . sn−1,0

. . .
...

sn−1,n−1

 T =

t0,0 . . . tn−1,0

. . .
...

tn−1,n−1

.
(33)

Here, V ∈ Rm×n is a Vandermonde matrix and S, T ∈ Rn×n
are invertible upper triangular matrices. The particular struc-
ture of (31)–(32) is used to formulate the main result of this
section, which shows that K and L are Krylov subspaces.

Definition 26. [15, Sect. 7.4.5] A Krylov subspace Kn(A, b)
generated by A ∈ Rm×m and b ∈ Rm×1 is defined as

Kn(A, b) = span{b, Ab,A2b, . . . , An−1b}.

Remark 27. The Vandermonde matrix V in (33) is an ele-
mentary Krylov matrix, which reflects the degree structure of
the monomial basis in (4).

Lemma 28. Let Φ, Ψ be defined in (14)–(15) and W1, W2 in
(16). Then,

K := span(W1Φ) (34)
L := span(W2Ψ) (35)

are Krylov subspaces.

Proof: By virtue of (31)–(32), with S and T invertible,
span(W1Φ) = span(W1V ) and span(W2Ψ) = span(W2V ).
Now, observe that it is possible to write

W1 V = K :=
[
W 1 XW 1 · · · Xn−1W 1

]
∈ Rm×n, (36)

W2 V = L :=
[
W 2 XW 2 · · · Xn−1W 2

]
∈ Rm×n, (37)

with node matrix X and weight vectors W 1, W 2 given by

X = diag(ξ1, ξ2, . . . , ξm) ∈ Rm×m (38)

W 1 =
[
w11 w12 · · · w1m

]T ∈ Rm×1,

W 2 =
[
w21 w22 · · · w2m

]T ∈ Rm×1.
(39)

From Def. 26 it follows that K and L form a Krylov basis,
which completes the proof. �

Lemma 28 shows that for any choice of basis polynomials
ϕj(ξ), ψj(ξ), j = 0, 1, . . . , n−1 that satisfy a degree structure,
the subspaces K and L defining the oblique projection (13) are
Krylov subspaces. Projection methods on Krylov subspaces
have been studied in, e.g., [23], [25], [32].

If the monomial basis φmon,j(ξ) in (4) is used for ϕj(ξ)
and ψj(ξ), i.e., K and L in (36)–(37) are used as a vector
basis for K and L, then (13) takes the form:

(LT K) θ = (V T WT
2 W1 V ) θ = V TWT

2 W1Φnθn. (40)

Typically, (40) is severely ill-conditioned, i.e., κ(LT K)� 1.
On the contrary, the use of bi-orthonormal polynomial bases
for ϕj(ξ) and ψj(ξ) leads to optimal conditioning of the
oblique projection (13), see Sect. IV. The next section shows
that optimal conditioning is in fact achieved by using bi-
orthonormal vector-bases for K, L.

C. Bi-orthonormal vector-bases for Krylov subspaces

In this section, it is shown that formulating the oblique
projection (13) using bi-orthonormal polynomials yields bi-
orthonormal vector-bases for the Krylov subspaces K, L. Fur-
thermore, these bases are shown to be related to an important
matrix tri-diagonalization problem.

The following theorem connects bi-orthonormal polynomi-
als with bi-orthonormal Krylov bases.

Theorem 29. Let ϕj(ξ), ψj(ξ) ∈ R[ξ], j = 0, 1, . . . , n− 1, be
bi-orthonormal polynomials, see Def. 15. Let S, T ∈ Rn×n be
the coefficient matrices of these polynomials, such that (31)–
(32) hold. Now, using (36)–(37), define

K̃ := K S = W1 V S, (41)

L̃ := L T = W2 V T,

Then, bi-orthonormality of ϕj(ξ), ψj(ξ), j = 0, 1, . . . , n − 1,
implies that L̃T K̃ = I.

Proof: By virtue of Thm. 17 for bi-orthonormal polynomials,
S and T are such that:

L̃T K̃ = TT V T WT
2 W1 V S = ΨT WT

2 W1 Φ = I. �

Remark 30. The first columns of K̃ and L̃ are obtained by
normalizing the weight vectors W 1 and W 2:

k̃1 = W 1

/√∣∣WT
2 W 1

∣∣, (42)

l̃1 = sign(WT
2 W 1) · W 2

/√
|WT

2 W 1|. (43)

Since K̃, L̃ reflect the degree structure of ϕj(ξ), ψj(ξ),
j = 0, 1, . . . , n − 1, these Krylov bases have a remarkable
connection with a matrix tri-diagonalization problem. The
following lemmas are used to formulate the main result.

Lemma 31. Let X and W 1, W 2 be defined in (38)–(39). Let
K̃, L̃ denote bi-orthonormal vector-bases for K,L in (34)–
(35), respectively, with k̃1, l̃1 defined in (42)–(43). Then,

L̃T X K̃ = H1,
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where H1 denotes an upper Hessenberg matrix.

In analogy to Lemma 31, the following result holds.

Lemma 32. Let X and W 1, W 2 be defined in (38)–(39). Let
K̃, L̃ denote bi-orthonormal vector-bases for K,L in (34)–
(35), respectively, with k̃1, l̃1 defined in (42)–(43). Then,

K̃T X L̃ = H2,

where H2 denotes an upper Hessenberg matrix.

Together, Lemma 31 and Lemma 32 provide the basis to
relate bi-orthonormal Krylov bases vectors with a matrix tri-
diagonalization problem. For the following result, assume that
n = m, with m the number of nodes in (1), such that the
Krylov subspaces K and L in (34)–(35) span Rm×m.

Theorem 33. Let X and W 1, W 2 be defined in (38)–(39).
Let K̃, L̃ denote bi-orthonormal vector-bases that span K,L
in (34)–(35), respectively, with k̃1, l̃1 defined in (42)–(43).
Then, the pair K̃, L̃ = K̃−T induces a similarity transfor-
mation, which transforms an initial node-weight matrix into
tri-diagonal form as follows:[

1

L̃T

][
0 WT

2

W 1 X

][
1

K̃

]
=

 0 β0 0 1,m−1

γ0

0m−1,1
T

,
(44)where

H1 = HT
2 =


α1 β1
γ1 α2 β2

γ2 . . .
. . .

. . . βm−1

γm−1 αm

 := T . (45)

Remark 34. Note that (44) can only be attained for
ξk, w1k, w2k ∈ R, see Ass. 18. For general ξk, w1k, w2k ∈ C,
two distinct Hessenberg matrices H1 and H2 are obtained.

Theorem 33 is connected with Lanczos’ algorithm [25],
to convert a non-symmetric matrix into a tri-diagonal matrix
under similarity. In turn, Lanczos’ algorithm can be considered
as special variant of the conjugate-gradient method [23].
Matrix tri-diagonalization is also studied in, e.g., [43], [33].

Starting from (44), three-term-recurrence relations for bi-
orthonormal polynomials can be derived, as explained next.

D. Three-term-recurrence relations
In this section, three-term-recurrence relations for bi-

orthonormal polynomials are derived. First, it is shown that
(44) enables the derivation of three-term-recurrence relations
for the columns of the Krylov bases K̃ and L̃, see also [32].

Lemma 35. Consider the similarity transformation (44) in
Thm. 33. The columns of the matrices K̃ and L̃ satisfy the
following three-term-recurrence relations:

k̃j+1 =
1

γj
((X − αj) k̃j − βj−1 k̃j−1), (46)

l̃j+1 =
1

βj
((X − αj) l̃j − γj−1 l̃j−1). (47)

The three-term-recurrence relations (46)–(47) are initialized
with k̃1 and l̃1 in (42)–(43) and k̃0 := 0, l̃0 := 0.

An intrinsic relation exists between bi-orthonormal Krylov
bases K̃ and L̃ and bi-orthonormal polynomials ϕj(ξ), ψj(ξ),
j = 0, . . . , n − 1. This is confirmed in the following theo-
rem, where Lemma 35 is used to derive three-term-recursion
relations for bi-orthonormal polynomials.

Theorem 36. Consider the similarity transformation (44)
in Thm. 33. Bi-orthonormal polynomials ϕj(ξ), ψj(ξ), j =
0, . . . , n − 1 with respect to the bi-linear form (13) for the
considered nodes and weights satisfy the following three-term-
recurrence relations:

ϕj(ξ) =
1

γj
((ξ − αj)ϕj−1(ξ)− βj−1 ϕj−2(ξ)), (48)

ψj(ξ) =
1

βj
((ξ − αj)ψj−1(ξ)− γj−1 ψj−2(ξ)). (49)

Three-term-recurrence relations for bi-orthonormal polyno-
mials are also studied in, e.g., [17], [12].

Given the recursion coefficients that form the tri-diagonal
matrix T in (45), (48)–(49) enable the efficient construction
of ϕj(ξ), ψj(ξ), j = 0, 1, . . . , n − 1. Hence, the essence of
constructing bi-orthonormal polynomial bases is a numerically
accurate and efficient algorithm for performing the matrix tri-
diagonalization in (44). Such an algorithm is presented next.

VI. ALGORITHM FOR RECURRENCE COEFFICIENTS

In this section, an algorithm is developed to solve the
matrix tri-diagonalization problem (44). First, in Sect. VI-A,
a special tri-diagonal form is considered. Then, in Sect. VI-B,
an algorithm that extends the ‘chasing down the diagonal’
approach in [30] and [37] is presented.

A. Special tri-diagonal matrix for an indefinite inner product

Matrix tri-diagonalization (44) is obtained by virtue of
Ass. 18, which implies that

wT2kw1k = wT1kw2k ∈ R, k = 1, . . . ,m.

In that case, (21) is symmetric and defines an indefinite inner
product, cf. Lemma 13-(b). As shown in Sect. IV-C, the main
results in Thm. 16 and Thm. 17 can now be attained using a
single polynomial basis, which is obtained by employing the
general theory in Sect. V.

Importantly, (44) is non-unique, since bi-orthogonal pairs
k̃j , l̃j , j = 0, 1, . . . ,m can be scaled arbitrarily to obtain
l̃Tj k̃j = 1. This property is exploited to construct a special tri-
diagonal matrix Ts that has i) positive sub-diagonal elements,
and ii) super-diagonal elements that are equal in magnitude
to the sub-diagonal elements, but may have opposite sign, see
also [32, p. 487]. Hereby, an interesting result is obtained.

Lemma 37. Consider (44). Let γj > 0, j = 0, 1, . . . ,m− 1.
In addition, let |βj | = γj , i.e., βj = ±γj , j = 0, 1, . . . ,m−1.
Thus, the tri-diagonal matrix takes the special form
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Ts =


α1 ±γ1
γ1 α2 ±γ2

γ2 α3
. . .

. . .
. . . ± γk−1

γk−1 αk

. (50)

Now, let bi-orthonormal polynomials ϕi(ξ), ψj(ξ), i, j =
0, 1, . . . , n− 1 be constructed using (48)–(49), with initializa-
tion (70)–(71). Then,

ψj(ξ) = ± ϕj(ξ) ∀ j = 0, 1, . . . , n− 1. (51)

Result (51) has an important implication for the bi-
orthonormal bases that are developed using (50).

Theorem 38. Consider (44), where the tri-diagonal matrix
takes the form Ts in (50). Let bi-orthonormal polynomial bases
ϕi, ψj , i, j = 0, 1, . . . , n− 1 be generated by (48)–(49), with
recurrence coefficients taken from Ts. Then, the individual
polynomial basis ϕi(ξ), i = 0, 1, . . . , n − 1, as well as the
polynomial basis ψj(ξ), j = 0, 1, . . . , n − 1, is orthonormal
with respect to the indefinite inner product (21).

Theorem 38 confirms that a polynomial basis that is
orthonormal with respect to an indefinite inner product is
obtained immediately by pursuing the general theory for bi-
orthonormal polynomial bases. The next section provides an
algorithm to construct the form (50).

B. Chasing down the diagonal

In this section, a numerically reliable algorithm is presented
that develops the decomposition (44) for the tri-diagonal
form (50). This algorithm follows the rationale of ‘chasing
down the diagonal’, pursued in [31], [30], and [37]. In partic-
ular, new node-weights triples are added to the problem one
by one, after which the intermediate result is converted into a
tri-diagonal matrix of appropriate size. As a result, i) the
underlying structure of the problem can be exploited, and
ii) numerical round-off errors are minimal. The main steps
of the algorithm are as follows.

Algorithm 39 (Chasing down the diagonal).
Initialization: Using (ξ1, w11, w12), define the initial matrix[

β1

γ1 α1

]
=

[
sign(w11w21)

√
|w11w21|√

|w11w21| ξ1

]
.

Addition of new node-weights triple: Starting with k = 1,
consider the kth tri-diagonal matrix, which is appended with
the (k + 1)th node-weights triple (ξk, w1k, w2k):

S0 =



w2k ±γ0
w1k ξk
γ0 α1 ± γ1

γ1 α2 ± γ2
γ2 α3

. . .. . .
. . . ± γk−1

γk−1 αk


.

Two steps are taken to zero the indicated elements that violate
the structure of a tri-diagonal matrix under similarity.

• Step 1:

Re-scaling of the new weights, to introduce symmetry up to
minus signs. Let ς1 = sign(w1k), and define

P0 =


1

ς1 ·

√∣∣∣∣w2k

w1k

∣∣∣∣
Ik

, Q0 =


1

ς1 ·

√∣∣∣∣w1k

w2k

∣∣∣∣
Ik

.
Then,

S1 = PT0 S0Q0 =

±
√
|w1kw2k| ±γ0√

|w1kw2k| ξk
γ0 α1 ± γ1

γ1 α2 ± γ2
γ2 α3 . . .. . .

. . . ± γk−1

γk−1 αk


.

Ê

Ë

• Step 2:
Chasing the bulge elements down the diagonal, where the
indicated window Ê, Ë, . . . is shifted down along the main
diagonal. Let window j be updated as follows:

PTj


α′j−1 µ ρ

ν λ σ
π τ αj βj

γj αj+1

Qj =


α′j−1 β′j−1

γ′j−1 α′j µ′ ρ′

ν′ λ′ σ′

π′ τ ′ αj+1

,
where the similarity transformation matrices Pj , Qj ∈ R4×4,
for which holds that PTj Qj = I , are given by

Pj =


1

ς · µ
γ′j−1

ς · π
γ′j−1

ς · ρ
γ′j−1

ς · −νγ′j−1

1

, Qj =


1

ν
γ′j−1

ρ
γ′j−1

π
γ′j−1

−µ
γ′j−1

1

,
with γ′j−1 =

√
|πρ+ νµ| and ς = sign(πρ+νµ). It is readily

verified that as a result, 0 < γ′j−1 = ±β′j−1. �

Generalizations of Alg. 39 for the situation where ξk ∈ C,
w1k, w2k ∈ C1×q , k = 1, . . . ,m, with q > 1, follow the same
philosophy as presented above.

Remark 40. Note that in the situation where w2k = w1k

∀ k = 1, . . . ,m, i.e., (21) defines a conventional inner product,
Pj and Qj coincide and form the Givens reflector

Pj = Qj =


1

µ√
π2+µ2

π√
π2+µ2

π√
π2+µ2

−µ√
π2+µ2

1

,
In that case, Alg. 39 reduces to the algorithm in [31] and [16]
with established good numerical properties, which transforms
a symmetric node-weights matrix into Jacobi form under
unitary similarity. In the general case, Pj and Qj are not
unitary, although det(Pj) = det(Qj) = 1, except for the
scaling transformation P0, Q0. A full analysis of Alg. 39 is
beyond the scope of this paper.
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Fig. 3. Noisy measurements Po(ξk), k = 1, . . . , 190, of the true system.

VII. NUMERICAL EXAMPLE

A. Problem setup

In this section, the main result of this paper is illustrated on a
simulation example. A 6th order true system Po(ξ) = no(ξ)

do(ξ) =

104· 59.37 ξ4 − 151.16 ξ3 + 134.09 ξ2 − 47.15 ξ + 5.72

ξ6 + 1.11·102 ξ4 + 1.67·108 ξ2 − 5.91·106 ξ + 6.85·104

is considered, with ξ ∈ R. It is assumed that the true numerator
no(ξ) is known. Hence, a model P̂ (ξ, θ) is parametrized as

P̂ (ξ, θ) =
no(ξ)

d(ξ, θ)
, d(ξ, θ) =

6∑
j=0

ϕj(ξ) θj ,

where ϕj(ξ) ∈ R[ξ] is a scalar, degree j, real polynomial basis
function with corresponding coefficient θj ∈ R. Measure-
ments are generated by sampling Po(ξ) at 190 nodes, where
ξ = 0.001 · [1, 2, . . . , 100, 110, 120, . . . , 1000]. These samples
are contaminated by multiplicative, normally distributed noise
with variance 0.0625, see Fig. 3. The goal is to compute

θ? = arg min
θ

190∑
k=1

(Po(ξk)− P̂ (ξk, θ))
2. (52)

B. System identification algorithm

An optimum of (52) is attained if

190∑
k=1

∂

∂θ
(Po(ξk)− P̂ (ξk, θ))

2 = 0 (53)

holds, which is nonlinear in θ. To solve (53), the iterative
approach in [3] is applied. As a result, the polynomial equality

m∑
k=1

∂g(ξk, θ)

∂θT

T

wT2k (w1k f(ξk, θ) − hk) = 0 , (54)

where
f(ξ, θ〈i〉) = g(ξ, θ〈i〉) = d(ξ, θ〈i〉),

w1k =
Po(ξk)

d(ξk, θ〈i−1〉)
, (55)

w2k =
P̂ (ξk, θ

〈i−1〉)

d(ξk, θ〈i−1〉)
, (56)

hk =
no(ξk)

d(ξk, θ〈i−1〉)
,

is solved iteratively, see also Alg. 43 in App. A. In iteration i,
P̂ (ξ, θ〈i−1〉) is available. In the remainder of this section, i = 1
is considered. Associated with (54) is the oblique projection

(ΨTW2W1Φ) θ〈i〉 = ΨTW2 h, (57)

where h = [h1 h2 . . . hm]T , see Sect. III-A for details.

C. Exploiting freedom in the selection of polynomial bases

The selection of appropriate polynomial bases is a key
step towards the computation of an accurate solution to (57).
When using the monomial basis (4), i.e., ϕj(ξ) = ψj(ξ) =
φmon,j(ξ), j = 0, 1, . . . , 6, the condition number is

κ(ΦTmonW
T
2 W1Φmon) = 4.35 · 1011 .

In the next section, it is shown that the bad conditioning of (57)
leads to inaccurate models. This is resolved effectively using
the results presented in this paper. Using Alg. 39, the freedom
in selection of bases is exploited by constructing polynomial
bases ϕj(ξ), ψj(ξ), j = 0, 1, . . . , 6 that are bi-orthonormal
with respect to the bi-linear form (21), with w1k, w2k in (55)–
(56). Indeed, the main result in Thm. 17 is confirmed, as the
use of bi-orthonormal polynomials leads to optimal numerical
conditioning of (57):

κ(ΨTWT
2 W1Φ) = 1.00.

D. Illustration of the propagation of rounding errors

Next, the consequences of poor numerical conditioning in
system identification are shown. To this end, (57) is written as

Aθ = b, (58)

where A = (ΨTW2W1Φ) and b = ΨTW2 h. Typically, (58)
is solved using QR-factorization. To investigate the sensitivity
to rounding errors, random perturbations db are added to the
righthand side, whereafter resulting perturbations dθ of the
parameter vector are investigated. In accordance with [15,
Thm. 5.3.1.], the following bound on the worst-case relative
error propagation can be derived:

‖dθ‖2
‖θ‖2

≤ 1

σ(A)

‖Aθ‖2
‖θ‖2

· ‖db‖2
‖b‖2︸ ︷︷ ︸

worst−case amplification for a particular nominal solution θ

≤ κ(A)· ‖db‖2
‖b‖2

.

When formulating (57) using monomial basis polynomials,
1

σ(A)
‖Aθ‖2
‖θ‖2 = 4.43 · 106. Indeed, in Fig. 4 it is shown

that relatively small perturbations, for example due to round-
off errors during QR-factorization, might lead to significant
perturbations in the parameter vector. This is confirmed in
Fig. 5-(a), where a non-negligible difference of the resulting
model estimate is obtained by small random perturbations
of b. In contrast, when bi-orthonormal polynomial bases are
used to formulate (57), then κ(A) = 1. As a consequence,
perturbations in b are not amplified, which leads to a large
improvement in model accuracy, see Fig. 5-(b).
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Fig. 5. Nominal model P̂ (ξ, θ) (dashed) and cloud of models resulting from
random perturbations of the righthand side of the oblique projection.

VIII. CONCLUSIONS

In this paper, a polynomial theory for a general class of
polynomial equalities that are asymmetric and indefinite is de-
veloped. Polynomial bases that are bi-orthonormal with respect
to a data-dependent bi-linear form are presented. The optimal
approximant of a certain degree is equal to a scaled version
of the right basis polynomial of the corresponding degree.
As a result, the linear system of equations that results after
substitution of the polynomial bases has optimal numerical
conditioning, i.e., κ = 1. The importance of this approach
is confirmed by a comparison with traditional approaches, in
which the use of one single classical polynomial basis such
as the monomial basis, Chebyshev basis, etc., often leads to a
severely ill-conditioned linear system of equations, preventing
the computation of an accurate solution.

The proposed framework is expected to have many applica-
tions in the general field of identification and control, including
the nonexhaustive list of applications mentioned in Sect. II-B.
As a specific application, the framework is applied to a
recent system identification algorithm based on instrumental
variables. This particular algorithm is shown to typically lead
to poorly conditioned problems. In addition, it is shown that
the use of the presented bi-orthonormal polynomials achieves
κ = 1, which cannot be achieved using pre-existing results.

Illustrative simulation examples can be found in [20]. A 16th

order successful industrial case study is presented in [22].
Furthermore, an experimental example and comparison with
pre-existing approaches is presented in [39]. Finally, recent
experiments [40] have shown good results on a 100th order
model.
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APPENDIX A
POLYNOMIAL APPROXIMATION IN SYSTEM IDENTIFICATION

Two classes of frequency-domain identification algorithms
are presented, which connect to polynomial approximation.
Consider a true system Po(ξ), where ξ represents the s-domain
or z-domain. Let P̂ (ξ, θ) be the real-rational model

P̂ (ξ, θ) =
n(ξ, θ)

d(ξ, θ)
,

with n(ξ, θ), d(ξ, θ) ∈ R[ξ]. In weighted least-squares identi-
fication, the goal is, for a given weighting function W (ξ), to
determine the optimal model parameters θ by minimizing

V(θ)=

m∑
k=1

|ε(ξk, θ)|2 :=

m∑
k=1

|W (ξk)(Po(ξk)−P̂ (ξk, θ))|2. (59)

Remark 41. To ensure that the minimum to V(θ) in (59) is
a real-valued parameter vector θ, the nodes ξk, k = 1, . . . ,m
should be a set of complex-conjugate pairs, cf. [36, Sect. 5].
Thus, both positive and negative frequencies should be con-
sidered.

Since (59) is non-linear in real-valued parameters θ, it may
have several local minima, which are attained when ∂V(θ)

∂θT
= 0.

Lemma 42. A (local) optimum of V(θ) in (59) is attained if

m∑
k=1

[
−∂P̂ (ξk, θ)

∂θT

]H
WH(ξk)W (ξk)(Po(ξk)− P̂ (ξk, θ)) = 0.

(60)
Proof: Define ζ(ξk, θ) := ∂ε(ξk,θ)

∂θT
= −W (ξk)∂P̂ (ξk,θ)

∂θT
. The

result is obtained by observing that ∂V(θ)
∂θT

= 0 is equivalent
with

∑m
k=1 ζ

H(ξk, θ)ε(ξk, θ) = 0. �

To solve nonlinear equation (60) in θ, [3] proposes an
iterative algorithm where in iteration i use is made of an
estimate P̂ (ξ, θ〈i−1〉) from a previous iteration.

Algorithm 43 (Frequency-domain IV identification).
Let P̂ (ξ, θ〈i−1〉) be given. In iteration i, the polynomial
approximation problem (1) is solved, where

f(ξ, θ) = g(ξ, θ) =
[
d(ξ, θ〈i〉) n(ξ, θ〈i〉)

]T
, (61)

and
w1k =

W (ξk)

d(ξk, θ〈i−1〉)

[
Po(ξk) −1

]
, (62)

w2k =
W (ξk)

d(ξk, θ〈i−1〉)

[
P̂ (ξ, θ〈i−1〉) −1

]
.

Indeed, then (1) approximates (60), as is verified by solving

− ∂P̂ (ξ, θ)

∂θT
=

∂

∂θT

([
0 −1

d(ξ,θ)

] [d(ξ, θ)
n(ξ, θ)

])

=
∂ d(ξ, θ)

∂θT

[
0 1

d(ξ,θ)2

] [d(ξ, θ)
n(ξ, θ)

]
+
−1

d(ξ, θ)

∂ n(ξ, θ)

∂θT

=
1

d(ξ, θ)

[
P̂ (ξ, θ) −1

] ∂

∂θT

([
d(ξ, θ)
n(ξ, θ)

])
,
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in which P̂ (ξ, θ〈i−1〉) and d(ξ, θ〈i−1〉) are then substituted
using the previous iteration i− 1, and subsequently rewriting

ε(ξ, θ) =
W (ξ)

d(ξ, θ)

[
Po(ξ) 1

] [d(ξ, θ)
n(ξ, θ)

]
, (63)

in which d(ξ, θ〈i−1〉) is to be substituted. �

An alternative algorithm is often encountered in literature.
It aims to solve (59) using linear least-squares optimization.

Algorithm 44 (Sanathanan-Koerner iteration). [34]
Let d(ξ, θ〈i−1〉) be given. In iteration i, polynomial approxi-
mation problem (12) is solved, with f(ξ, θ), w1k in (61)–(62).
By using ε(ξ, θ) in (63), in which d(ξ, θ〈i−1〉) is substituted,
it can be verified that (12) approximates (59).

APPENDIX B
PROOFS OF AUXILIARY RESULTS

Proof of Theorem 21 First, necessity is proven. Consider the
decomposition

WT
2 W1 = Wsym +Wskew,

where
Wsym = 1

2 (WT
2 W1 +WT

1 W2),

Wskew = 1
2 (WT

2 W1 −WT
1 W2).

Because the transpose of (28) yields ΦT WT
1 W2 Φ = D, it

follows that (28) is equivalent to:

ΦTWsym Φ = D, (64a)

ΦTWskewΦ = 0. (64b)

Since any generic polynomial basis ϕj(ξ), j = 0, 1, . . . , n− 1
is related to the monomial basis φmon,k(ξ) in (4) through

ϕj(ξ) =

j∑
k=0

sjk φmon,k(ξ) ,

Φ in (14) can be written as

Φ = Vq S, (65)
where

Vq :=


Iq ξ1Iq . . . ξn−1

1 Iq
Iq ξ2Iq . . . ξn−1

2 Iq
...

...
...

Iq ξmIq . . . ξn−1
m Iq

, S :=


s00 s10 . . . sn−1,0

s11 . . . sn−1,1

. . .
...

sn−1,n−1

.
Here, Vq ∈ Rmq×nq and S ∈ Rnq×nq , where S is full rank
since sjj , j = 0, 1, . . . , n − 1 are invertible by assumption,
cf. Sect. II-A. Consequently, it follows after inserting (65) that
(64b) requires

V Tq Wskew Vq = 0,

which only holds if Sij = 0 ∀ i, j = 0, 1, . . . , n− 1.

Next, sufficiency is proven. As shown above, if Sij = 0 ∀
i, j = 0, 1, . . . , n − 1, then (64b) holds. It remains to select
ϕj(ξ), j = 0, 1, . . . , n−1 such that (64a) holds. Inserting (65)
yields

ST V Tq Wsym Vq S = D. (66)

The matrix V Tq Wsym Vq is symmetric and is of full rank
for well-posed problems. As a consequence, by selecting

S = L−T , where L follows from the LDU-decomposition
for Hermitian matrices [15, Sect. 4.1, 4.4]

V Tq Wsym Vq = LDLT ,

(66) is satisfied, hence, (28) holds. �

Proof of Lemma 31 Since L̃T K̃ = I implies that L̃ = K̃−T ,
it holds that:

(L̃TXK̃)j = (L̃TXK̃)(L̃TXK̃) · · · (L̃TXK̃)︸ ︷︷ ︸
j terms

= L̃TXjK̃.

Now define H1 := L̃T X K̃, which is used to formulate:

L̃T
[
K̃ XK̃ · · · Xn−1K̃

]
=
[
I H1 · · · Hn−1

1

]
.

Post-multiplying both sides with In ⊗ e1, where e1 =
[1 0 · · · 0]T ∈ Rn×1 is the first standard basis vector and
⊗ denotes the Kronecker product, yields:

L̃T
[
k̃1 Xk̃1 · · · Xn−1k̃1

]
=
[
e1 H1e1 · · · Hn−1

1 e1

]
. (67)

Using (42), the left-hand side of (67) can be rewritten as:
1√
|lT1 k1|

L̃T
[
k1 Xk1 · · · Xn−1k1

]
=

1√
|lT1 k1|

L̃TK.

Since L̃T K̃ = I , pre-multiplication of (41) with L̃T yields
L̃TK = S−1. By combining this result with (36), it follows
that (67) is equivalent to:

1√
|lT1 k1|

S−1 =
[
e1 T e1 · · · T n−1e1

]
,

which is an upper triangular matrix since S is upper triangular.
This implies that H1 is upper Hessenberg. �

Proof of Theorem 33 To start with, equality of the first row
and column of (44) is proven. It follows from (42)–(43) that

W 1 = k̃1

√
|lT1 k1|,

sign(WT
2 W 1) ·W 2 = l̃1

√
|lT1 k1|.

Hence, by virtue of bi-orthonormality of K̃ and L̃:

L̃T W 1 =
√
|lT1 k1| L̃T k̃1 =

[
γ0

0m−1,1

]
,

WT
2 K̃ = sign(lT1 k1)·

√
|lT1 k1| l̃T1 K̃ = [β0 0 1,m−1 ],

where γ0 =
√
|lT1 k1| and β0 = sign(lT1 k1)

√
|lT1 k1|, hence,

|β0| = γ0. It remains to show that L̃TXK̃ is a tri-diagonal
matrix. Observe that, since ξk, w1k, w2k ∈ R, k = 1, . . . ,m,

H2 = K̃TXL̃ = (L̃TXK̃)T = HT
1 .

where use is made of Lemma 31 and Lemma 32. Thus, the
matrix L̃TXK̃ is both upper and lower Hessenberg, hence,
tri-diagonal, which proves the theorem. �

Proof of Lemma 35 Since L̃T K̃ = I , or, equivalently,
L̃T = K̃−1, the lower right component of the eigenvalue
decomposition (44) induces the following equations:

X K̃ = K̃ T , (68)
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X L̃ = L̃ T T . (69)

Evaluating (68)–(69) per column, while taking into account
the structure of T in (45), yields the following three-term-
recursions for the columns of K̃ and L̃:

X k̃j = βj−1 k̃j−1 + αj k̃j + γj k̃j+1,

X l̃j = γj−1 l̃j−1 + αj l̃j + βj l̃j+1.

Rearranging terms yields (46)–(47). �

Proof of Theorem 36 Select the 0th order polynomials ϕ0(ξ)
and ψ0(ξ):

ϕ0(ξ) = 1
/√
|lT1 k1| = 1

/√
|W T

2 W 1|, (70)

ψ0(ξ) = sign(lT1 k1)
/√
|lT1 k1|

= sign(W T
2 W 1)

/√
|W T

2 W 1|. (71)

Let Φj , Ψj denote the jth column of Φ, Ψ in (14)–(15). Then,
using (16) and (42)–(43) it follows that

W1 Φ1 = k̃1,

W2 Ψ1 = l̃1.

Consequently,

[ϕ0(ξ), ψ0(ξ)] = ΨT
1 W

T
2 W1Φ1 = l̃ T1 k̃1 = 1.

Now, let ϕj(ξ), ψj(ξ), j = 1, 2, . . . be constructed using the
recursion relations (48)–(49), with ϕ−1 := 0, ψ−1 := 0 and
ϕ0(ξ), ψ0(ξ) as given in (70)–(71). As a result, by virtue of
the vector-recursion relations (46)–(47) in Lemma 35,

W1 Φj+1 = k̃j+1,

W2 Ψj+1 = l̃j+1.

Finally, since

[ϕi(ξ), ψj(ξ)] = ΨT
j+1W

T
2 W1Φi+1 = l̃ Tj+1 k̃i+1 = δij ,

bi-orthonormality of the polynomials ϕi(ξ) and ψj(ξ), i, j =
0, 1, . . . , n− 1, follows from bi-orthonormality of the Krylov
bases K̃ and L̃. �

Proof of Lemma 37 The proof follows by induction. The
polynomials ϕ0(ξ) and ψ0(ξ), see (70)–(71), are chosen such
that ψ0(ξ) = ±ϕ0(ξ), where ϕ0 > 0. Hence,

ψ0(ξ) = sign(ψ0) · ϕ0(ξ).

From (48)–(49), it follows that

ϕ1(ξ) = 1
γ1

(ξ − α1)ϕ0(ξ),

ψ1(ξ) = 1
β1

(ξ − α1)ψ0(ξ).

Since in Lemma 37, βk = ±γk, γk > 0 holds by assumption,

βk = sign(βk)γk. (72)

Thus,
ψ1(ξ) = sign(ψ0) sign(β1) · ϕ1(ξ).

As a result, ψ1(ξ) = s1 ·ϕ1(ξ) where s1 := sign(ψ0) sign(β1).
In general, let

ψi(ξ) = si · ϕi(ξ), (73)
si := sign(ψ0) sign(β1) · · · sign(βi) (74)

hold for i = k−1, i = k−2. The proof of Lemma 37 follows
by showing that this relation also holds for i = k. In particular,
observe that (48)–(49) equal

ϕk(ξ) = 1
γk

((ξ − αk)ϕk−1(ξ) − βk−1 ϕk−2(ξ)) ,

ψk(ξ) = 1
βk

((ξ − αk)ψk−1(ξ) − γk−1 ψk−2(ξ))

= sign(βk) 1
γk

((ξ − αk) sk−1 ϕk−1(ξ) − . . . (75)

γk−1 sk−2 ϕk−2(ξ))

= sign(βk) 1
γk

(sk−1 · (ξ − αk)ϕk−1(ξ) − . . . (76)

sk−1 · βk−1 ϕk−2(ξ)) ,

where in (75) use is made of (72) and (73), and in (76) use is
made of (72) and (74). Finally, by applying (74) to (76) again,
it follows that ψk(ξ) = sk ϕk(ξ), i.e., (73) holds for i = k
indeed. This proves that (51) holds. �

Proof of Theorem 38 By virtue of Lemma 37, (51) holds.
As an immediate consequence, bi-orthonormality of the poly-
nomials ϕi(ξ) and ψj(ξ) as defined in Def. 15 is equivalent
with orthonormality with respect to an indefinite inner product,
cf. Def. 22, for the individual polynomials bases ϕi(ξ) as well
as ψj(ξ). �
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