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Abstract— Frequency-domain identification algorithms are
considered. The aim of this paper is to develop a new algorithm
that i) converges to a minimum of the objective function, and ii)
possesses optimal numerical properties. Hereto, recent results
in instrumental variable system identification are exploited. In
addition, a new bilinear form is proposed that leads to the
novel introduction of bi-orthonormal polynomials in system
identification. The combination of these aspects leads to the
desired convergence properties in conjunction with optimal
numerical conditioning. The results are supported by means of
a simulation example.

I. INTRODUCTION

Frequency-domain system identification [14] is of signif-
icant importance for a broad class of applications, since it
enables i) straightforward data reduction, ii) straightforward
combination of multiple data sets, iii) a direct estimation
and use of nonparametric noise models, and iv) a direct
connection to control-relevant identification criteria.

Common parametric identification techniques based on
frequency-domain data involve a nonlinear least-squares prob-
lem. Here, the nonlinearity arises from the parametrization of
the poles in the denominator polynomial. In [11], the nonlinear
problem is solved using a single linear least-squares problem.
However, this requires selection of an a priori unknown
weighting function. The SK-algorithm [17] mitigates the
effect of such weighting through iterations. In [1], [5], the
SK-algorithm is generalized to multivariable systems. Yet,
two aspects require further attention.

On the one hand, frequency-domain identification problems
are typically numerically ill-conditioned. Several partial solu-
tions exist, including i) frequency scaling [13], ii) amplitude
scaling [8], iii) the use of Möbius transformations to recast
continuous-time identification problems as discrete-time ones
and vice versa, and iv) the use of orthonormal polynomials and
orthonormal rational functions with respect to a continuous
inner product, see, e.g., [10] and [12] for a relation to
numerical properties. These partial solutions typically improve
numerical conditioning, but may be insufficient to reliably
solve complex frequency-domain identification problems.
Thereto, in [9], an approach is presented that leads to
optimal numerical conditioning of the SK-algorithm by using
polynomials that are orthonormal with respect to a data-
based discrete inner product, see [15], [19] for a definition
and earlier results.

On the other hand, the fixed point of the SK-algorithm
generally does not correspond to a (local) minimum of
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the nonlinear least-squares criterion, as shown in [20]. Conse-
quently, the SK-algorithm is typically used as an initialization
for subsequent Gauss-Newton iterations, see, e.g., [1], which
guarantees convergence to a (local) minimum.

Recently, in [6, Sect. 3.5.3 and 3.5.8], the SK-algorithm
has been reformulated to guarantee that the fixed point of
the iterations corresponds to an optimum of the objective
function, see also [3] for the multivariable case. This renders
superfluous the commonly used Gauss-Newton iteration,
enabling an increase of algorithm efficiency.

Although the result in [6] [3] potentially reduces the num-
ber of iterations in frequency-domain identification, a direct
implementation of the algorithm in [3] exhibits poor numerical
properties. This obstructs reliable and accurate computation
of the optimal model. In fact, in this paper it is shown
both theoretically and by means of a numerical example that
the condition numbers associated with the linear systems of
equations in [3] are quadratically larger than the conditioning
of standard SK-iterations as encountered in [17], [1], [5]. In
addition, the approach in [15], [19], [9] to optimally condition
the SK-algorithm does not apply to the procedure in [3] due
to the lack of an appropriate inner product.

The main contribution of this paper is to present a novel
framework for frequency-domain system identification based
on a nonlinear least-squares criterion that i) is efficient in the
sense that Gauss-Newton iterations are rendered superfluous,
ii) ensures optimal numerical conditioning. Essentially, the
proposed solution exhibits the advantageous properties that
are obtained in [3], while providing optimal numerical
conditioning properties as in [15], [19], [9], though through
a fundamentally different mechanism.

The key technical result that differs from earlier results in
system identification is the use of new basis functions that
satisfy a bi-orthonormality condition with respect to a certain
bilinear form. These bi-orthonormal functions replace the
commonly used orthonormal functions that are used in system
identification, including those with respect to a continuous
inner product in [10] and those orthonormal with respect to
a data-based discrete inner product in [15], [19], [9]. The
possibly indefinite bilinear form that is used to construct
these bi-orthonormal functions replaces the inner product in
the standard orthonormal case.

The paper is organized as follows. In Sect. II, the frequency-
domain identification problem is posed and two iterative
algorithms are compared with respect to their convergence and
numerical properties. In Sect. III, bi-orthonormal polynomials
are introduced in the context of system identification, where
it is proven that they provide optimal numerical conditioning
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for a class of algorithms with advantageous convergence
properties. A numerical example is given in Sect. IV.
Conclusions are provided in Sect. V.

To facilitate the exposition, attention is restricted to
SISO continuous-time systems. The generalization to the
multivariable and discrete-time situation is conceptually
straightforward, yet, the full solution is beyond the scope of
the present paper.

II. PARAMETRIC FREQUENCY-DOMAIN IDENTIFICATION:
ALGORITHMS AND ANALYSIS

In this section, the frequency-domain identification problem
is formulated. Subsequently, two existing algorithms are
analyzed with respect to their i) convergence properties, and
ii) numerical properties.

A. Frequency-domain identification problem

The following frequency-domain identification problem is
considered in this paper. Let Po(sk), k = 1, . . . ,m, be given
measurements. Here, sk = jωk, ωk ∈ R denotes frequency.
The goal is to determine a real-rational model

P̂ (s, θ) =
n(s, θ)

d(s, θ)
(1)

that minimizes the criterion

V (θ) :=
∥∥∥W (Po(s)− P̂ (s, θ))

∥∥∥2
2

(2)

=
m∑
k=1

[(
Po(sk)− P̂ (sk, θ)

)∗
W (sk)

∗W (sk)
(
Po(sk)− P̂ (sk, θ)

)]
.

To solve (2), a polynomial basis for n(s, θ) and d(s, θ)
needs to be selected. Hereto, the vector polynomial form[

d(s, θ)
n(s, θ)

]
=

n∑
j=0

ϕj(s) θj , (3)

is considered, where ϕj(s) ∈ R2×2[s] are 2× 2 real-valued
block polynomials, and θj ∈ R2×1 are the corresponding
coefficient vectors. A common choice is to parameterize
n(s, θ) and d(s, θ) independently as a monomial basis, i.e.,

ϕmon
j (s) =

[
sj 0
0 sj

]
. (4)

The cost criterion V (θ) in (2) is a nonlinear and typically
non-convex function in θ, see (1) and (3). In the next sections,
two iterative approaches are investigated to minimize (2).

B. SK-algorithm

The rationale behind the SK-algorithm is is to rewrite (2) as

V (θ) :=
∥∥∥W 1

d(s,θ) (Pod(s, θ)− n(s, θ))
∥∥∥2
2
, (5)

which motivates the following iterative algorithm.

Algorithm 1 (SK-iteration [17]) Given θ〈0〉, iteratively
solve for θ〈i〉 the linear least-squares problem∥∥∥∥W 1

d(s,θ〈i−1〉)

[
Po −I

] [d(s, θ〈i〉)
n(s, θ〈i〉)

] ∥∥∥∥2
2

, i = 1, 2, . . . (6)

The basic idea behind Alg. 1 is to iteratively compensate for
the a priori unknown weighting 1

d(s,θ) in (5).

To see that (6) is a linear least-squares problem indeed,
observe that using (3) it can be rewritten in matrix form as

W1 Φ θ〈i〉 = b, (7)
where

θ〈i〉 =
[(
θ
〈i〉
0

)T (
θ
〈i〉
1

)T
. . .

(
θ
〈i〉
n−1
)T ]T, (8)

Φ =


ϕ0(s1) ϕ1(s1) . . . ϕn−1(s1)
ϕ0(s2) ϕ1(s2) . . . ϕn−1(s2)

...
...

...
ϕ0(sm) ϕ1(sm) . . . ϕn−1(sm)

 , (9)

W1 = diag
(
w1,1 . . . w1,m

)
, (10)

w1,k = W (sk)[Po(sk) −1]
d(sk, θ〈i−1〉)

, (11)

b = W1

[
(ϕn(s1) θ

〈i〉
n )T . . . (ϕn(sm) θ

〈i〉
n )T

]T
. (12)

Here, θ〈i〉n has been pre-specified such that P (s, θ) is strictly
proper and d(s, θ) monic. Note that the matrices W and b
in (7) are dependent on θ〈i−1〉.

Next, the numerical properties of the essential computa-
tional step (7) are investigated. The numerical accuracy of the
linear least-squares problem (7) is related to κ(W1Φ), where

κ(·) = σ(·)
σ(·)

is the condition number. A common choice, e.g., in [1], [5],
regarding the polynomial basis ϕ(s) in (3) is the monomial
basis (4). In this case, the matrix Φ in (9) is a Vandermonde
matrix, which is notoriously ill-conditioned for continuous-
time systems. This prohibits the computation of an accurate
solution to the least-squares problem in (7).

The key idea in [15], [19], [9] to obtain a numerically
reliable solution to (7) is to select a basis that is orthonormal
with respect to the data-dependent discrete inner product

〈φ(s), ψ(s)〉 :=

m∑
k=1

ψ(sk)H wH1,k w1,k φ(sk). (13)

If ϕj(s), j = 0, 1, . . . , n − 1 is chosen to be orthonormal
with respect to (13), then κ(W1Φ) = 1. This can be verified
directly from the normal equations1 corresponding to (7):

(ΦH WH
1 W1 Φ)︸ ︷︷ ︸

= I2n

θ〈i〉 = ΦH WH
1 b. (14)

It is emphasized that the specific result for the lefthand side
of (14) is enabled by the use of a polynomial basis that is
orthonormal with respect to the data-specific inner product
(13). In contrast, other common orthonormal basis functions
in system identification are orthonormal with respect to a
different, e.g., continuous inner product that is independent
of the problem data W1 is used, for instance

∫
ψ(s)Hφ(s).

Such a choice commonly leads to κ(W1Φ)� 1.

C. IV-type algorithm
The fixed point of the SK-iteration in Alg. 1 is generally not

an optimum of V (θ) in (2), as proven in [20] and exemplified
in Sect. II-D. Recently, in [6] and [3], the SK-iteration has

1These normal equation need not be formulated explicitly, since an
orthonormal basis with respect to the inner product (13) immediately carries
the optimal approximant.
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been reformulated to resolve this deficiency. The basic idea is
to consider the first order necessary condition for optimality:

∂V (θ)
∂θ = 0. (15)

Specifically, rewrite Criterion (2) as V (θ) = ε(s, θ)Hε(s, θ),
where ε(s, θ) := W (Po(s)− P̂ (s, θ)). Then, (15) is recast as

ζH(s, θ) ε(s, θ) = 0, where ζ(s, θ) := ∂ε(s,θ)
∂θ = −∂P̂ (s,θ)

∂θ .

As a result, a (local) optimum of V (θ) is attained when
m∑
k=1

[
∂P̂ (sk,θ)

∂θ

]H
W (sk)∗W (sk) (Po(s)−P̂ (sk, θ)) = 0. (16)

As discussed in [3], the variable ζ(z, θ) can be interpreted
as an instrumental variable (IV), see [18] for an overview of
instrumental variable methods in system identification.

Using the parametrization (3), it is seen that (16) is a
nonlinear function in θ. In analogy to the SK-algorithm Alg. 1,
the following iterative procedure is suggested in [3].

Algorithm 2 (IV-iteration [3]) Given θ〈0〉, iteratively solve
for θ〈i〉 the linear system of equations
m∑
k=1

[
∂P̂ (sk, θ)

∂θ

]H ∣∣∣∣∣∣
θ=θ〈i−1〉

W (sk)∗ (17)

· W (sk)

d(sk, θ〈i−1〉)

[
Po(sk) −1

] [d(sk, θ
〈i〉)

n(sk, θ
〈i〉)

]
= 0.

The essential idea is that the fixed point of the iterative
procedure in Alg. 2 satisfies (15), hence, corresponds to a
(local) optimum of the nonlinear least-squares Criterion 2.

By observing that

ζ(s, θ) = − ∂P̂ (s, θ)

∂θ
=

∂

∂θ

[[
0 −1

d(s,θ)

] [
d(s, θ)
n(s, θ)

]]
=

1

d(s, θ)

[
P̂ (s, θ) −1

] [
ϕ0(s) ϕ1(s) . . . ϕn(s)

]
,

the system of equations (17) can be written in matrix form as

(ΦHWH
2 W1 Φ) θ〈i〉 = ΦHWH

2 b, (18)
where the variables in (18) are defined in (8)-(12), and

W2 = diag
(
w2,1 . . . w2,m

)
, (19)

w2,k = W (sk)[P̂ (sk,θ
〈i−1〉) −1]

d(sk,θ〈i−1〉)
. (20)

The numerical accuracy of the solution to (18) crucially
depends on the condition number κ(ΦHWH

2 W1 Φ), which
is typically significantly worse than the condition number
κ(W1 Φ) corresponding to the SK algorithm, see (7). To
support this, consider the situation where upon convergence
of Alg. 2, P̂ (sk, θ

?) ≈ Po(sk), k = 1, . . . ,m, where θ?

denotes the fixed point of the iteration (17). In this case,
W2 ≈W1, see (10) and (19). Consequently,

κ(ΦHWH
2 W1 Φ) ≈ κ(ΦHWH

1 W1 Φ) = κ(W1 Φ)2. (21)

As has been argued in Section II-B, the use of the monomial
basis (4) leads to κ(W1 Φ)� 1. Consequently, (21) implies
that using the monomial basis in Alg. 2, as is for instance
assumed in [3], leads to a severely bad conditioning of (18).
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Fig. 1: Motivating example: measurements Po(sk) (blue dot) and
estimated model P̂ (s, θ) (red, solid).

Note that the result (21) is precisely the reason why (7) is
numerically often solved using a QR-factorization of (W1 Φ),
instead of explicitly forming the normal equations (14).

Summarizing, the use of a monomial basis in Alg. 2 is
expected to lead to a poorly conditioned frequency-domain
identification algorithm and thus an inaccurate solution.
Although the use of orthonormal polynomials with respect
to the data-based discrete inner product (13) might improve
numerical conditioning, it generally will not provide optimal
conditioning, in contrast to result (14) for the SK-algorithm.
The fundamental reason is that the least-squares solution to
(7) involves an orthogonal projection, whereas the solution
to (18) involves an oblique projection, see [2] for a definition
and interpretation. As a result, there is no underlying inner
product of the form (13) for the system of equations (18).

In Sect. III, a new solution to (18) is proposed that leads to
optimal numerical conditioning, i.e., κ(ΦHWH

2 W1 Φ) = 1.

D. Motivating example
In this section, the convergence and numerical properties of

Alg. 1 and Alg. 2 are compared in a numerical example. Con-
sider measurements Po(sk), sk = 1, . . . ,m that are depicted
in Fig. 1. A relatively simple low-order simulation example
is considered to avoid excessively large condition numbers
that obstruct convergence of the iterative procedures.

In Table I, converged results of the algorithms in [17], [3],
and [9] are shown. Indeed, as explained in Sect. I, the fixed
point of the SK-algorithm [17] is not a (local) minimum of

V (θ), as
∥∥∥∂V (θ)

∂θ

∣∣
θ=θ?SK

∥∥∥
2
> 0. Hence, a suitable optimization

routine, e.g., a Gauss-Newton iteration, has to be invoked to
ensure convergence to a minimum. The IV-type algorithm in
[3] does not suffer from this deficiency, as is evidenced by
the numerical result in Table I. Specifically, the fixed point of
the iteration θ?IV corresponds to an optimum, since the first
order optimality condition ∂V (θ)

∂θ

∣∣
θ=θ?IV

= 0 holds. Indeed, this
yields a slightly smaller criterion value, i.e., V (θ?IV) < V (θ?SK).

I: MOTIVATING EXAMPLETABLE

Alg. basis V (θ?)
∥∥∥ ∂V (θ)

∂θ

∣∣
θ=θ?

∥∥∥
2

κ

1 (SK) monomial (4) 30.47937 1.97 · 10−2 8.09 · 102
1 (SK) orthonormal (13) 30.47937 1.97 · 10−2 1.00
2 (IV) monomial (4) 30.47901 < 10−13 6.56 · 105
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Next, the numerical properties associated with both algo-
rithms are considered. Using the monomial basis (4) in Alg. 1
leads to κ(W1Φ) = 8.09 · 102. Importantly, by choosing a
polynomial basis that is orthonormal with respect to the inner
product (13), a linear system of equations is obtained that is
optimally conditioned indeed, i.e., κ(W1Φ) = 1.

Although solving Alg. 2 with the monomial basis in-
deed yields an optimum of the criterion V (θ), it leads to
κ(ΦHWH

2 W1Φ) = 6.56 · 105, which is approximately equal
to κ2(W1Φ). This confirms validity of (21). In conclusion,
ensuring that the fixed point of the iterative procedure is
a local minimum of V (θ) seems to go at the expense of a
significantly worse numerical conditioning. Unfortunately, the
orthonormal polynomial theory, see, e.g., [9], that leads to
optimal condition of the SK-iteration does not lead to optimal
conditioning of IV-iteration in Alg. 2.

The aim of the next section is to develop an approach
that achieves both the advantageous convergence properties
related to Alg. 2 and optimal numerical properties.

III. RELIABLE FREQUENCY-DOMAIN IDENTIFICATION:
A BI-ORTHONORMAL POLYNOMIAL APPROACH

In this section, a reliable implementation of Alg. 2 is
presented that relies on a novel solution for optimal numerical
conditioning of (18). As observed in Sect. II-C, (18) corre-
sponds to an oblique projection. As a result, the inner product
(13) that is inherently related to the orthogonal projection
associated with (14), does not yield optimal conditioning here.
The main contribution of this section is the introduction of
bi-orthonormal polynomials in system identification, which
enables optimal numerical conditioning of (18).

The outline of this section is as follows. In Sect. III-A,
a new bilinear form is considered that replaces the inner
product (13). This bilinear form is shown to be intimately
related to bi-orthonormal polynomials. In Sect. III-B, it is
shown that these polynomials in turn relate to an inverse
eigenvalue problem for a tri-diagonal matrix. In Sect. III-C,
it is confirmed that this enables the efficient computation
of bi-orthonormal polynomials by exploiting a three-term
recurrence relation. Finally, in Sect. III-D, it is shown that
the new bi-orthonormal polynomials lead to optimal numerical
conditioning of (18) indeed.

A. Bi-Orthonormal polynomials

The following data-dependent bilinear form is considered.

Definition 3 Given m distinct nodes λk, k = 1, . . . ,m. Let
w1,k, w2,k ∈ C1×α be corresponding nonzero weights. Then,
for α-dimensional block polynomials π(λ), %(λ) ∈ Rα×α[λ],
the following bilinear form is considered:

〈π(λ), %(λ)〉 :=

m∑
k=1

%(λk)H wH2,k w1,k π(λk) . (22)

It is emphasized that the bilinear form (22) is not an inner
product. Indeed, in contrast to the positive definite form (13),
the bilinear form (22) is generally indefinite. Associated with
(22) is the following definition of bi-orthonormal polynomials.

Definition 4 Consider polynomials πk(λ), %`(λ), k, ` =
1, . . . ,m, where πj(λ), %j(λ) are of degree j. Then
πk(λ), %`(λ) are bi-orthonormal polynomials (BPs) with
respect to the bilinear form (22) if 〈πk, %`〉 = δk`.

For the SISO frequency-domain identification problem
presented in Sect. II, in Def. 3, α = 2 and λk = sk = jωk,
where ωk ∈ R. In the remainder of this section, however,
the following simplifying assumption is imposed to facilitate
the exposition and derivation of the algorithm in Sect. III-C.

Assumption 5 Throughout Sect. III, α = 1 and λk ∈ R,
k = 1, . . . ,m, i.e., m distinct nodes on the real line are con-
sidered. In addition, it is assumed that w1,k, w2,k ∈ R\{0}.

Note that the theory presented in this paper can directly be
generalized to α-dimensional block polynomials and arbitrary
nodes λk ∈ C along similar lines.

Since nonzero weights w1,k, w2,k are assumed in As-
sumption 5, it is always possible to find BPs as defined in
Def.4. This follows from an analysis of the moment matrices
associated to (22), cf. [4, Sect. 4.2], [16, Lem. 1]. Moreover,
the BPs satisfy three-term-recurrence relations.

Lemma 6 The BPs πj(λ), %j(λ) in Def. 4 satisfy the three-
term-recurrence relations:

πj(λ) = ((λ− αj)πj−1(λ) − βj−1 πj−2(λ)) / γj , (23)
%j(λ) = ((λ− αj) %j−1(λ) − γj−1 %j−2(λ)) / βj , (24)

j = 1, . . . ,m− 1. The recursions are initialized with π−1 =
%−1 = 0 and π0 = %0 = 1/σ0. Here, σ0 > 0, αj , βj , and
γj are pre-determined real recursion coefficients.

The gist of constructing data-dependent biorthonormal
polynomial bases is the efficient and reliable derivation of the
recursion coefficients σ0, αj , βj , and γj from given problem
data. In the next section, the problem of deriving these
parameters from given nodes λk with corresponding weights
w1,k and w2,k is posed as an inverse eigenvalue problem.

B. An inverse eigenvalue problem for tri-diagonal matrices

Starting from the nodes and weights, the three-term-
recursion coefficients can be obtained by transforming an
initial matrix containing the nodes and weights into tri-
diagonal form under similarity.

Lemma 7 Define the node matrix Λ ∈ Rm×m and weight
vectors W̃1, W̃2 ∈ Rm×1, see also (11) and (20), as:

Λ := diag(λ1, λ2, . . . , λm) ,

W̃1 :=
[
w1,1 w1,2 . . . w1,m

]T
,

W̃2 :=
[
w2,1 w2,2 . . . w2,m

]T
.

There exists a similarity transformation matrix Q ∈ Rm×m
such that:[
1
Q−1

][
0 W̃T

2

W̃1 Λ

][
1
Q

]
=

 0 σ0 0 1,m−1
σ0

0m−1,1 T

(25)

where T ∈ Rm×m is a tri-diagonal matrix of the form:
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T =


α1 β1 . . . 0

γ1 α2

. . .
...

. . .
. . .

. . .
...

. . .
. . . βm−1

0 . . . γm−1 αm

, (26)

and σ0 =

√
W̃T

2 W̃1 and γ1, . . . , γm−1 are strictly positive.

A proof of Lemma 7 follows along similar lines as in [16].
Note that the lower right component of (26) represents an
inverse eigenvalue problem for the tri-diagonal matrix T . An
algorithm to solve problems of this type is given in, e.g.,
[16], [7, p. 504]. Implementations with enhanced numerical
stability can be derived along the lines of [15], [19], [9].

In the next section, it is confirmed that the inverse
eigenvalue problem (26) connects to the three-term-recurrence
relations for bi-orthonormal polynomials.

C. Three-term-recurrences for bi-orthonormal polynomials
Since Q in (25) is a similarity transformation matrix, the

columns of Q and Q−T are bi-orthonormal by definition.

Definition 8 Let Q be given in Lemma 7. Define the matrix:

P := Q−T . (27)
Now, let Q and P be decomposed into individual columns:

Q =
[
q1, q2, . . . , qm

]
, P =

[
p1, p2, . . . , pm

]
,

By definition, Q and P are bi-orthonormal, i.e., PT Q = I .

The tridiagonal similarity transformation in Lemma 7
induces three-term-recurrence relations between the columns
of Q and P , respectively, as is formalized next.

Lemma 9 Let Λ, W̃1, W̃2 be defined in Lemma 7. The
columns qk, pk in Def. 8 satisfy the three-term-recurrence
relations:

Λ qk = βk−1 qk−1 + αk qk + γk qk+1 , (28)
Λ pk = γk−1 pk−1 + αk pk + βk pk+1 . (29)

The recursions are initialized with:

q1 = W̃1/

√
W̃T

2 W̃1 , (30)

p1 = W̃2/

√
W̃T

2 W̃1 . (31)
Proof: By virtue of (27), the tri-diagonal decomposition (25)
requires PT ΛQ = T , hence:

ΛQ = QT , (32)

ΛTP = P TT . (33)
Evaluating the kth column of (32) and (33) yields (28) and
(29). The specific initialization vectors q1 and p1 in (30)–(31)
enforce the desired zeroes in the first row and column of (25).

Lemma 9 gives three-term-recurrence relations for bi-
orthonormal vectors qj and pj . Using the same recursion
coefficients, the recurrence relations (23)–(24), as introduced
in Sect. III-A, yield a related set of polynomials. In the
following lemma, this connection between the BPs {π(λ),
%(λ)} in Def. 4 and the columns of {Q,P} in Def. 8 is made
explicit.

Lemma 10 Consider weight matrices W1,W2 ∈ Rm×m as
in (10) and (19), respectively, where under Assumption 5
w1,k, w2,k ∈ R are scalar. Denote with Πj , Rj ∈ Rm×1 the
columns obtained after evaluation of πj , %j , j = 0, . . . ,m−1
at the considered nodes λk, i.e.:

Πj : =
[
πj(λ1) πj(λ2) . . . πj(λm)

]T
, (34)

Rj : =
[
%j(λ1) %j(λ2) . . . %j(λm)

]T
. (35)

The columns qj+1, pj+1 in Def. 8 and the BPs πj(λ), %j(λ)
in Def. 4 are related as follows:

qj+1 = W1 Πj ,

pj+1 = W2Rj .

Proof: Follows by rewriting (28)–(29), initialized with (30)–
(31), as:

qk+1 = ((Λ− αk) qk − βk−1 qk−1) / γk,

pk+1 = ((Λ− αk) pk − γk−1 pk−1) / βk,

and comparing with (23)–(24), with π0 = %0 = 1/

√
W̃T

2 W̃1.

The result in Lemma 10 implies that (23)–(24), with
recursion coefficients obtained from the inverse eigenvalue
decomposition (25), indeed yield bi-orthonormal polynomials
in the sense of Def. 4, hence, yield optimal conditioning.

D. Bi-orthonormal polynomials lead to optimally conditioned
frequency-domain identification
The following result constitutes the main result of this section.

Lemma 11 Let πj(λ), %j(λ), j = 0, . . . , n− 1 be polynomi-
als obtained by applying (23)–(24) with recursion coefficients
from the decomposition (25). Then, πj , %j are bi-orthonormal
with respect to the bilinear form (22), i.e.,

RT W2W1 Π = In , (36)
Π := [Π0, . . . ,Πn−1], R := [R0, . . . , Rn−1], see (34)–(35).

Proof: Since Q in Lemma 7 is a similarity transformation
matrix, Q and P are biorthonormal, i.e., PTQ = I , cf. Def. 8.
Using Lemma 10, this biorthonormality condition can be
rewritten as (36). Since Π and R are evaluations of π(λ)
and %(λ) at the considered set of nodes λk, k = 1, . . . ,m,
(36) implies that πj , %j are biorthonormal in the sense of (22).

Returning to the linear system of equations corresponding
to Alg. 2, bi-orthonormal polynomials with respect to the
bilinear form (22) lead to the following system of equations:

(RT W2W1 Π)θ〈i〉 = RT W2b. (37)
By virtue of the result (36), κ(RT W2W1 Π) = 1, leading to
an optimal numerical conditioning as desired.

From an identification perspective, the essential difference
of (37) compared to (18) is that two sets of basis functions
are used. One is used to parameterize the model and the other
to parameterize the instrumental variables ζ. In this respect,
the choice of basis related to R in (37) can be interpreted as a
linear transformation of the instruments ζ . In fact, the solution
is invariant under such transformations, cf. [18, Section 3.1].

In the next section, the reason for optimal conditioning
of Alg. 2 by using bi-orthonormal polynomials is supported
with a brief example.
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IV. EXAMPLE

In this section, the results of Sect. III are illustrated.

Measurements Consider the 7th order system Po(λ) =
no(λ)
do(λ)

=

(λ− 400)(λ− 250)(λ− 50)(λ+ 10)(λ+ 50)(λ+ 250)(λ+ 400) + 4 · 1016
(λ− 300)(λ− 200)(λ− 100)(λ)(λ+ 100)(λ+ 200)(λ+ 300) + 2.5 · 1016 .

A 300-point perturbed response vector P̃o(λk) is generated:
P̃o(λk) = Po(λk) + ν(λk),

λk = {−299,−297, . . . , 297, 299}, where

ν(λk) is a zero mean random noise with variance σ2
ν = 0.5.

Approximation of Po by a rational transfer function requires
simultaneous optimization of the numerator and denumerator
polynomials, cf. Alg. 2. This in turn demands for α = 2-
dimensional vector polynomials in Def. 3. For the sake of
simplicity, however, no(λ) is fixed, enabling the use of scalar
basis polynomials, i.e., α = 1. Thus, Assumption 5 holds.

Model A 7th order model P̂ with exact numerator polynomial
no is considered:

P̂ (λ, θ) =
no(λ)

d(λ, θ)
, d(λ, θ) =

n∑
j=0

ϕj(λ) θj ,

with basis polynomials ϕj(λ) ∈ R[λ] and coefficients θj ∈ R.

Reformulating (17) in Alg. 2 using a monomial basis
yields κ(ΨT

monW
T
2 W1Ψmon) = 5.51 · 1032 in (18). This

is due to the large dispersion in the amplitude of the
basis functions on the considered domain, cf. Fig. 2. In
contrast, the use of bi-orthonormal basis polynomials yields
κ(RTWT

2 W1Π) = 1.00 in (37), due to the fact that the basis
functions are selected specific to the data of the identification
problem at hand, see Fig. 3 for an illustration.
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Fig. 2: First 5 monomial basis functions ϕmon
j (λ), j = 0, . . . , 4.
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Fig. 3: First 5 basis functions πBP
j (λ), j = 0, . . . , 4, which are

bi-orthonormal with %BP
j (λ).

V. CONCLUSIONS
In this paper, a frequency-domain system identification

algorithm is considered that has favorable convergence
properties, in the sense that the fixed point of the iterative
procedure is an optimum of the identification criterion. It
is shown that a reliable implementation of the algorithm
hinges on the choice of basis polynomials. The key novel
result of this paper is the introduction of bi-orthonormal
polynomials in system identification to achieve optimal
numerical conditioning. This is illustrated with an example.
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