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Abstract: In deterministic model validation approaches, model errors can be attributed to
both disturbances and model uncertainty, leading to an ill-posed problem formulation. The
aim of this paper is to remedy the ill-posedness in model validation for robust control. A two-
stage procedure is developed, where first an accurate, nonparametric, deterministic disturbance
model is estimated from data, followed by the enforcement of averaging properties through
an appropriate periodic experiment design. The proposed deterministic approach results in an
asymptotically correctly estimated model uncertainty and is illustrated in a simulation example.

1. INTRODUCTION

Model validation is an essential step in any modeling pro-
cedure, since a model should be accompanied by a quality
certificate. Irrespective of how the model is obtained, its
predictive power should be tested by confronting the model
with measured data. In case the model can reproduce the
measured data, then the model is not invalidated. In this
respect, a model cannot be actually validated, since future
measurements may invalidate it. Hence, model validation
is often used to gain confidence in a model by collecting
large data sets under similar but independent operating
conditions.

Model quality is a crucial aspect in case the purpose of
the model is subsequent control design. In case of an
inaccurate model, the resulting model-based controller
can result in performance degradation or even closed-
loop instability when implemented on the true system.
A suitable characterization of model quality in view of
control design is by means of norm-bounded perturbations,
e.g., as suggested in Zames [1981]. These perturbations
can predict whether a designed controller will stabilize a
certain class of perturbed systems, presumably containing
the true plant. In contrast, this phenomenon cannot be
predicted when the uncertainty is attributed to an additive
signal, since additive signals cannot destabilize a feedback
loop. Besides its impact on the description of model
quality, the specific control application of the model,
e.g., for flexible mechanical systems [van de Wal et al.,
2002], also has certain specific properties, including the
possibility to collect large data sets and a large freedom in
the design of experiments.

The emergence of robust control methodologies, e.g., Fran-
cis [1987], has led to a development of model validation ap-
proaches that can deal with model uncertainty, see Poolla
et al. [1994] and Smith and Doyle [1992] for time and
frequency domain approaches, respectively. In essence, the
key question that is addressed in these model validation
for robust control approaches is whether there exists an
admissible realization of the model uncertainty and dis-
turbance in a certain predefined set that can explain the
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measurement data. Besides the perturbation model that
represents model uncertainty, inclusion of an additive sig-
nal to represent disturbances is essential, since any real-life
system is subject to such unmeasured exogenous inputs.
Typically, both the perturbation and additive signal are
characterized as deterministic sets, hence such approaches
are classified as deterministic model validation approaches.

Although deterministic model validation approaches are
directly compatible with robust control, these determin-
istic methodologies are generally ill-posed. In particular,
in model validation the goal is generally to determine
the smallest model uncertainty and disturbance that can
reproduce the measured data. In a deterministic approach,
the nominal model residual can be attributed to both
perturbations and additive signals. The resulting non-
uniqueness of the optimal solution to the model validation
problem classifies the problem as ill-posed [Tikhonov and
Arsenin, 1977]. Ill-posedness is also supported by the pres-
ence of trade-off curves in the model validation problem,
as is illustrated in Kosut [1995], Kosut [2001].

From a robust control perspective, ill-posedness of the
model validation problem is highly undesirable. On the
one hand, if too much of the nominal model residual
is attributed to disturbances, then the resulting model
uncertainty may be too small to encompass the true
plant. Hence, in this case a model-based controller may
suffer from performance degradation or even closed-loop
instability when implemented on the true system. On the
other hand, if too much of the nominal model residual
is attributed to disturbances, then an overly conserva-
tive control design will result. In the present paper, it
is attempted to remedy the ill-posedness of the model
validation problem.

The main mechanism that causes the ill-posedness in de-
terministic model validation is the poorly defined notion
of disturbance. Conceptually, exogenous disturbances are
signals that are independent of the input to the system.
In case the model residual contains signals that are de-
pendent on the input to the system, then these signals
are a part of input-output behavior and should be con-
sidered as model uncertainty. However, in a deterministic
setting, the optimal outcome of the model validation prob-
lem corresponds to the best-case disturbance signal in a
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predefined set. This best-case additive signal is typically
perfectly dependent on the input signal, hence the optimal
solution corresponds to the case where the disturbance
can reproduce a part of the nominal model residual that
is caused by an incorrect input-output model. This leads
to an overly optimistically estimated model uncertainty.
In contrast to deterministic disturbance descriptions, by
defining disturbances in a stochastic framework, e.g., as
in Ljung [1999], independence of disturbances and input
signals can straightforwardly be enforced. In Liu and Chen
[2005], Paganini [1996], approaches are suggested that
resemble the stochastic notion of disturbances. However,
these approaches are computationally infeasible for mod-
erate data lengths, as is commonly encountered in model
validation for control.

Pursuing a worst-case approach to model validation [Ozay
and Sznaier, 2007], which is closely related to identification
in H∞, does not resolve the ill-posedness in the model
validation problem. Indeed, in this case the disturbance
is allowed to perfectly work against the input, see Hjal-
marsson [1993], and hence is dependent on the input. The
use of many data sets in model validation motivates an
optimistic approach instead of a pessimistic/worst-case
approach. Specifically, in case a certain data set contains
a large disturbance contribution, then this data set is less
informative regarding the input-output behavior of the
system. Hence, the input-output model is not necessarily
inadequate, and thus this should not lead to a large model
uncertainty. In the present paper, ill-posedness is further
analyzed and a framework is presented where indepen-
dence of disturbances is appropriately enforced, leading to
an asymptotically correctly estimated disturbance model
and model uncertainty. Thus, the optimism is reduced for
an increased measurement length, classifying the proposed
approach as a moderately optimistic model validation pro-
cedure.

The main contribution of this paper is a model validation
approach that attempts to resolve the ill-posedness in
deterministic approaches and that is suitable for multivari-
able systems with large data lengths. To this end, a two-
stage frequency domain approach is developed. Firstly,
accurate, nonparametric, and deterministic disturbance
models are estimated based on mild stochastic assump-
tions (Section 3). Secondly, averaging properties of dis-
turbances in a deterministic framework are established
(Section 4). Averaging is achieved by considering an ap-
propriate input design, specifically periodic input signals.
Advantages of periodic input signals are well-established
in a stochastic framework [Pintelon and Schoukens, 2001].
In the present paper, it is shown how these advantages
can be established in a deterministic setting. In addition,
a computational solution is presented (Section 5) and the
approach is illustrated in a simulation example (Section 6).

2. MODEL VALIDATION PROBLEM

2.1 Motivation for a frequency domain approach

In this paper, a frequency domain approach to model
validation is considered. A frequency domain approach
has the following advantages that are not found in a time
domain approach.

(1) Frequency domain approaches enable the use of non-
parametric disturbance models. This implies that a
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Fig. 1. Model validation setup.

parameterization and numerical optimization step are
not required. Consequently, no undermodeling errors
are introduced during disturbance modeling.

(2) The resulting algorithm involves constant matrix
computations at each frequency, where the matrix
dimensions are invariant under the measurement
length. In contrast, the involved matrix dimensions
in a time domain approach grow with the measure-
ment length, resulting in computational infeasibility
for medium or large scale problems.

(3) The H∞-norm has a clear frequency domain inter-
pretation. In fact, necessary and sufficient conditions
are available for verifying the validity of H∞-norm
bounded perturbation models in case a discrete fre-
quency grid is used, see Oomen and Bosgra [2008].
This is a useful property, since experiments on real-
life systems are always based on finite time data, and
hence discrete frequency grids.

2.2 Problem formulation

The model validation setup considered in this paper is
depicted in Figure 1. The true system Mo ∈ RHnz×nw

∞
is given by

zm = Mow + vtrue, (1)

where zm is the measured output, w is the manipulated
input, and vtrue represents a disturbance term, including
unmeasured inputs and measurement noise. The uncertain
model is represented by

z = Fu(M̂, ∆u)w + v, (2)

where z is the uncertain model output, v represents the

disturbance model, and M̂ ∈ RH(np+nz)×(nq+nw)
∞ contains

the nominal model and uncertainty model interconnection
structure. Both open-loop and closed-loop systems can be
handled by considering appropriate uncertainty structures,
see, Oomen et al. [2009] for a dual-Youla based structure
that is tuned towards a certain control criterion. Struc-
tured H∞-norm bounded perturbations are considered,
i.e.,

∆u :=
{

∆u ∈ RH∞

∣

∣∆u(ejω) ∈ ∆c
u, ω ∈ [0, 2π)

}

, (3)

∆c
u := diag

{(

δ1Ir1
, . . . , δsIrS

,∆S+1, . . . ,∆S+F

)∣

∣

δi(z) ∈ C,∆j ∈ C
pj×qj , i = 1, . . . , S, j = 1, . . . , F

} (4)

where δi and ∆j represent repeated scalar perturbations
and full block perturbations, respectively, and are norm-
bounded as

σ̄(δi) < γ, i = 1, . . . , S, σ̄(∆j) < γ, i = 1, . . . , F. (5)

In case the data for model validation is extracted from a
real-life system, then model validation is always performed
using time signals that have a certain finite length T .
Hence, it is assumed that all signals are in ℓ2[1, T ]. In
the frequency domain validation problem, the measured
discrete time signals w(t) and zm(t) are transformed into
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the frequency domain using the DFT, resulting in W (ωi)
and Zm(ωi), respectively, e.g.,

WN (ωi) =
1√
N

N
∑

t=1

w(t)ejωit, (6)

where ωi ∈ Ω, and Ω is the DFT grid Ω given by 2πp
N

, p =
0, 1, . . . , N − 1. To anticipate on the results in Section 4,
the frequency grid Ωval is introduced, which is given by

Ωval =
{

ωi ∈ Ω
∣

∣W (ωi) 6= 0
}

. (7)

In the frequency domain case, the uncertain model residual
is defined as

E(ωi) = Zm(ωi) − Z(ωi), (8)

where Z(ωi) is the DFT of z(t). In addition, assume that

V (ωi) ∈ V(ωi), (9)

where V(ωi) is defined more precisely in Section 3.

This leads to the following Frequency Domain Model
Validation Decision Problem (FDMVDP).

Problem 1. (FDMVDP). Let the uncertain model (2), a
norm-bound γ(ωi), and measurements W (ωi), Zm(ωi),
ωi ∈ Ωval be given. Then, the FDMVDP amounts to
verifying whether ∃∆u(ωi) ∈ ∆c

u, V (ωi) ∈ V(ωi) such that
E(ωi) = 0.

To determine the minimum-norm validating ∆u, the Fre-
quency Domain Model Validation Optimization Problem
(FDMVOP) is introduced.

Problem 2. (FDMVOP). Let the uncertain model (2) and
measurements W (ωi), Zm(ωi), ωi ∈ Ωval be given. Then,
the FDMVOP amounts to determining the minimum value
of γ(ωi) such that ∃∆u(ωi) ∈ ∆c

u, V (ωi) ∈ V(ωi) such that
E(ωi) = 0.

In this paper, a solution to the FDMVOP is provided. In
the pursued approach, the solution to the FDMVOP is
obtained by performing a bisection over γ(ωi) and solving
the corresponding FDMVDPs. To ensure the model vali-
dation problem is sensible, the following assumptions are
imposed for each ωi ∈ Ω. Firstly, well-posedness of the
LFT Fu(M̂, ∆u) is ensured.

Assumption 3. det(I−M̂11∆u) 6= 0 ∀∆u ∈∆u, ‖∆u‖∞< γ.

The following assumption implies that the model uncer-
tainty affects the relevant model outputs.

Assumption 4. For a certain ∆u ∈ ∆u, it holds that

Zm − M̂22W ∈ Im
(

M̂21∆u(I − M̂11∆u)−1M̂12

)

.

Assumptions 4 requires an appropriate selection of the per-
turbation model structure. Finally, it is ensured that the
model validation problem is not trivially solved. Thereto,
define the nominal model residual

Enom = Zm − M̂22W, (10)

leading to the following assumption.

Assumption 5. Enom 6= 0.

2.3 A motivating example

The following example reveals that a deterministic dis-
turbance model, as is employed in, e.g., Smith and Doyle
[1992], can lead to an ill-posed problem formulation and as
a consequence to a poor estimation of both the disturbance
model and model uncertainty.

0 1
0

1

γ

σ̄(V )

Invalidated

Not invalidated

Fig. 2. Example 6: invalidated models.

Example 6. Consider the frequency domain model valida-
tion problem for a certain ωi ∈ R. Given the measurement

W (ωi) = 1, Zm(ωi) = 3 + 2j, (11)

and the uncertain model

M̂(ωi) =

[

0 1
1 3 + 3j

]

, (12)

i.e., a SISO system equipped with an additive perturbation
model. In Figure 2, the result of the FDMVDP is depicted
for different norm-bounds of ∆u and V , i.e., γ and σ̄(V ),
respectively. A trade-off curve between the disturbance
V and model uncertainty can clearly be observed, which
contains solutions to the FDMVOP for different sets V. In
case σ̄(V ) = 1, then the nominal model residual Enom(ωi)
can be fully attributed to additive disturbances. In con-
trast, in case γ = 1, then Enom(ωi) can be fully attributed
to model uncertainty. As explained in Section 1, this trade-
off is undesirable from a robust control perspective.

3. DISTURBANCE MODEL

In this section, the disturbance model V is elaborated on in
detail. As motivated in Section 2.1 and Section 1, nonpara-
metric, deterministic disturbance models are employed.

In contrast to deterministic models, stochastic models
provide an accurate description for many realistic situ-
ations. In this section, a procedure is presented where
nonparametric disturbance models are estimated based on
mild stochastic assumptions. Subsequently, these stochas-
tic models are converted to deterministic models for each
frequency ωi ∈ Ωval.

Firstly, the approach is conceptually explained for the
single-variate case, which is generalized to the multi-
variate case at the end of this section. Throughout, the
analysis is performed for the infinite time case, at the end
of the section the implications for the finite time case are
discussed. The following assumption is imposed in the time
domain.

Assumption 7. Let vs = Hoe, where e ∈ ℓ2 is a sequence
of independent, identically distributed random variables
with zero mean, unit variance, and bounded moments of
all orders, and Ho ∈ RH∞.

Assumption 7 represents the additive, stochastic distur-
bance model in the time domain. This model provides a
suitable representation for many real-life disturbances.

The time domain Assumption 7 leads to the following
frequency domain result.

Theorem 8. Consider vs given by Assumption 7. Then,
for N → ∞, the DFT of vs, i.e., Vs,N (ωi), converges
in distribution to Nc(0, Cvs

(ωi)), for ωi 6= kπ, k ∈ Z.
In addition, Vs,N (ejωi) and Vs,N (ejωj ) are asymptotically
independent for i 6= j, ωi, ωj ∈ [0, π].
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For a proof of Theorem 8, see, e.g., Pintelon and Schoukens
[2001]. For a definition of the circular complex normal
distribution Nc, see, e.g., Miller [1974]. A useful prop-
erty of this distribution in the derivation of deterministic
disturbance models is that for z ∈ Nc, ℜ(z) and ℑ(z)
are independent. Hence, lines of constant probability are
circles in the complex plane.

Using the result of Theorem 8, the following result is
obtained.

Proposition 9. Let Vs,N (ωi) be a circularly complex nor-
mally distributed random variable, i.e., Vs,N ∈ Nc(0, Cvs

(ωi)),
and α ∈ [0, 1). Then,

P(|Vs,N (ωi)| <
√

1
2Cvs

(ωi)cχ) = α, (13)

where cχ denotes the α-probability level of the χ2(2)-
distribution.

Proposition 9 follows from standard results of χ2-distributions
and enables the conversion of a stochastic disturbance
model to a deterministic one. Specifically, let

¯̃V (ωi) =
√

1
2Cvs

(ωi)cχ, (14)

then with a probability α,

Vs,N ∈ δv
¯̃V (ωi), |δv| < 1. (15)

In (15), δv
¯̃V (ωi) with constraint |δv| < 1 constitutes a

deterministic disturbance model. Note that the model is
frequency dependent, resulting in a nonparametric distur-
bance model for all ωi ∈ Ωval.

The variance Cvs
(ωi) can be estimated from data in case

a periodic input signal is used. In particular, in Oomen
and Bosgra [2008], an estimator is proposed for finite time
experiments, resulting in estimated covariance matrices for
ωi ∈ Ωval. This result can be further refined to include the
distribution of the estimated covariance matrix.

In Oomen and Bosgra [2008], the property that a circular
complex normal distribution of random vectors can be
diagonalized is exploited to generalize the approach to
the multi-variate case. Specifically, for a system with nz

outputs, the deterministic disturbance model

V(ωi) =
{

TV (ωi)∆v
¯̃V (ωi)|∆v ∈ B∆v

}

(16)

∆v =
{

diag(δv,1, δv,2, . . . , δv,nz
)|δv,q ∈ C, q = 1, . . . , nz

}

.
(17)

is obtained, where ¯̃V (ωi) ∈ R
nz×nz is a diagonal matrix

and TV (ωi) ∈ C
nz×nz is a coordinate transformation

matrix. In this case,

V(ωi)1, V (ωi) ∈ V(ωi) (18)

constitutes a multivariable deterministic disturbance model.

4. AVERAGING IN A DETERMINISTIC
FRAMEWORK

Model validation in a deterministic framework requires
precautions to enforce independence properties of the dis-
turbance and the input. Specifically, irrespective whether
a deterministic or stochastic approach is pursued, the
concept of a disturbance prohibits a dependence of the
disturbance on the input. Optimal solutions to determin-
istic problems, however, typically correspond to situations
where disturbances perfectly correlate with the input, see,
e.g., Hjalmarsson [1993]. Building on the developments in

Section 3, a frequency response-based approach enables
a distinction between disturbances and the deterministic
response due to input signals. In particular, analysis of
the disturbance model (16) reveals that v cannot con-
tain periodic components. This is a direct consequence of
the stochastic model (7), where Ho ∈ RHnz×nz

∞ , and is
preserved in the transformation to a deterministic model.
Hence, since v is nonperiodic, a distinction between v and
u is obtained when u is periodic. This idea is developed
further in this section.

Using (8) and (2), the uncertain model residual is given
by

E(ωi) = Zm(ωi) −
(

Fu(M̂, ∆u)W (ωi) + V (ωi)1
)

, (19)

V (ωi) ∈ V(ωi). (20)
In the FDMVOP, the goal is to determine the minimum
value of γ such that the uncertain model is consistent with
the data, i.e.,

E(ωi) = 0 ∀ωi ∈ Ωval. (21)
The argument ωi is omitted in further derivations for no-
tational convenience, hence all equations involve constant
matrices. Assuming consistency and using (21) in (19) and
rearranging yields

Enom = M̂21∆u(I − M̂11∆u)−1W + TV ∆v
¯̃V 1. (22)

A key issue is that the nominal model error Enom depends
on both the size and the input direction of W . For a
constant direction of W , a normalization is useful to assess
the model error for different input signals. In particular,

Ē
nom :=

E
nom

‖W‖2

=
M21∆u(I − M11∆u)−1

M12W

‖W‖2

+
TV ∆v

¯̃
V 1

‖W‖2

.

(23)

The interpretation of (23) is that for each set of val-
idation data, the normalized nominal model residual
Ēnom has to be explained by the model uncertainty

term M21∆u(I−M11∆u)−1M12W

‖W‖2
and the disturbance term

TV ∆v
¯̃
V 1

‖W‖2
. Although the disturbance contribution is essen-

tial since it accounts for the fact that the measurement Zm

is contaminated by disturbances, it may result in an overly
optimistic model validation result. Specifically, due to the
deterministic, set-based disturbance description (20), the
disturbance can help explain a part of Ēnom that is actu-
ally caused by a systematic model error.

The following proposition is the main result of this section
and reveals that, in contrast to the model uncertainty
contribution, the disturbance contribution in (23) averages
out for a suitably chosen input signal.

Proposition 10. If the input W increases by a factor α,
then the part of the normalized nominal model residual
Ēnom that can be attributed to disturbances decreases by
α, whereas the contribution of the model uncertainty is
invariant under the increase of the W .

Proof. Only a sketch of the proof for the SISO case is
provided. Observe that in this case, the two quantities on
the right hand side of (23) are scalar. Next, by increasing
the input with α, and employing the homogeneity property
of norms,

Ēnom :=
M21∆u(I − M11∆u)−1M12W

‖W‖2
+

δv
¯̃Vq

α‖W‖2
, (24)

Next, from (24) and using the fact that δv is norm-
bounded, i.e., σ̄(δv) < 1, the part of Ēnom that can be
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Fig. 3. Consistency in the FDMVDP.
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Fig. 4. Recasting Figure 3 as an implicit LFT.

attributed to disturbances decreases with a factor α if the
input is increased with a factor α, completing the proof.

The signal W can be increased by a factor α by amplifying
the time domain signals by a factor α. In addition, repeat-
ing the experiment has a similar result in the frequency
domain case. In particular, suppose that w(t) is periodic
with period N . Then, in case the total measurement time
is equal to an integer number of periods nper, i.e., nperN ,

then for ωi = 2πp
N

, p = 0, 1, . . . , N − 1,

WnperN (ωi) =
√

nperWN (ωi). (25)

The admissible contribution of the disturbance term v in
the normalized nominal model error Ēnom thus decreases
with a factor

√
nper if nper periods of the periodic signal

w are applied. In this sense, the deterministic disturbance
averages out with a factor

√
nper if the measurement time

is increased with a factor nper.

5. SOLUTION TO THE VALIDATION PROBLEM

In this section, a solution to the FDMVDP is provided.
The FDMVDP amounts to verifying consistency of the
model with the data at each frequency ωi ∈ Ωval. The
consistency equation, i.e., E = 0, using (8), (2), and (16),
becomes

0 = Zm −Fu(M,∆u)W − Tv∆v
¯̃V 1, (26)

where ∆u ∈ ∆u, ∆v ∈ B∆v, see Figure 3. Next, selecting
a scalar input equal to one and rearranging yields the
implicit LFT of Figure 4, i.e., an LFT with an input and
an output equal to zero.

By linearity, Figure 4 corresponds to the implicit LFT

Fu(M̄, ∆̄)α = 0, (27)

where

M̄ =





0 0 ¯̃V 1
0 γM11 −M12W

−TV γM21 Zm − M22W



 (28)

∆̄ ∈ B∆̄, ∆̄ =

{[

∆v 0
0 ∆u

]

∣

∣∆v ∈ ∆v,∆u ∈ ∆u

}

, (29)

and α ∈ C\0. In (28) and (29), the norm of ∆u, i.e., γ,
has been absorbed in M̄ . By manipulating the consistency
equation (26) to the block diagram of Figure 4, the
FDMVDP is recast as the existence of signals that satisfy
the implicit LFT (27), which is related to the Structured
Singular Value (SSV) for autonomous LFTs. In fact, the
following definition provides an extension of the SSV that
is useful in model validation.

Definition 11. (Generalization of the SSV). [Paganini and
Doyle, 1994] Given complex matrices M,N of appropriate
sizes, µ̄∆̄(M,N) is defined as

µ̄∆̄(M,N) :=

(

min
∆̄

{σ̄(∆̄)|∆̄ ∈ ∆̄,Ker
([

I − ∆̄M

N

])

6= 0}
)−1

,

unless Ker
([

I − ∆̄M

N

])

6= 0, ∀∆̄ ∈ ∆̄, in which case

µ̄∆̄(M,N) := 0.

The definition of µ̄∆̄(M,N) leads to the main result of
this section, which is a necessary and sufficient test for the
FDMVDP.

Proposition 12. In the FDMVDP, the model is not in-
validated if and only if µ̄∆̄(M̄11 − M̄12X̄22M̄21, M̄21 −
M̄22X̄22M̄21) > 1, where X̄22 is a matrix that satisfies
X̄22M̄22 = I.

A proof can be obtained by employing the theory for
implicit LFTs that is presented in Paganini and Doyle
[1994], where also computable upper and lower bounds
of µ̄∆̄ are provided. Numerical algorithms are available in
Balas et al. [2007]. The result of Proposition 12 can directly
be used to solve the FDMVOP via bisection.

6. EXAMPLE

In this section, the results of the preceding sections are
illustrated by means of an example. Specifically, the non-
parametric estimation of the deterministic disturbance
model of Section 3 is illustrated. Subsequently, it is shown
that disturbances average out if the measurement time is
increased.

Consider the true ARX system
(

1 − 0.9z−1 + 0.7z−2
)

y = 0.3z−2u + e, (30)

where e(t) is zero mean white noise with unit variance.
The goal is to verify the validity of the model

P̂ =
0.3z−2

1 − z−1 + .7z−2
, (31)

i.e., to determine the minimum-norm ∆u such that the
model is consistent with the data. An additive perturba-
tion model is considered, i.e., P̂ + ∆u. The input signal is
chosen as

u(t) =

nω
∑

ωi=1

sin(ωit), ωi ∈ Ωval, (32)

where

Ωval =
{

2π
N

, 2π5
N

, 2π10
N

, 2π15
N

, 2π20
N

, 2π25
N

, 2π30
N

, 2π35
N

, 2π40
N

, 2π45
N

}

,

with N = 100.

The first step in the model validation procedure is the
estimation of a nonparametric disturbance model, where
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Fig. 5. Results of model validation test for varying nper.
Estimated deterministic disturbance model (top), es-
timated model uncertainty (bottom).

α = 0.99. The estimated disturbance models for nper =
{100, 1000, 10000} are depicted in Figure 5 (top). For
increasing measurement times, the estimate converges
rapidly to the true value.

In Figure 5 (bottom), the results of the FDMVOP are
depicted for different values of nper, together with the true
systematic model error. For nper = 100, it is observed that
the minimum-norm validating ∆u is significantly smaller
than the true systematic model error. In fact, for certain
frequencies ωi ∈ Ωval, the minimum-norm validating ∆u is
zero. Indeed, in this case the nominal model residual can
be attributed entirely to disturbances.

For increasing nper, it is observed that the FDMVOP
results in an increased norm bound that converges from
below to the true value. This is indeed the desired averag-
ing of disturbances in a moderately optimistic model val-
idation framework, leading to an asymptotically correctly
estimated model uncertainty.

7. CONCLUSIONS

In this paper, a two-stage approach that remedies the ill-
posedness in the deterministic model validation problem
formulation is presented. A thorough analysis reveals that
the notion of disturbance should be properly defined to
separate model uncertainty and disturbances in a system-
atic manner. This is achieved by first estimating realistic,
nonparametric, deterministic, and frequency dependent
disturbance models. Subsequently, averaging properties of
deterministic disturbances are considered, enabling a sep-
aration between disturbances and model uncertainty. The
key idea is to select an appropriate periodic input signal.
In fact, experiment design seems to be an unexplored area
in model validation for robust control.

Experimental results confirm that the proposed approach
enables an accurate estimation of model uncertainty for
sufficiently long measurement times. Concluding, a com-
putationally tractable model validation has been presented
that separates disturbances and model uncertainty, re-
sulting in asymptotically correctly estimated uncertainty
and disturbance models. In this perspective, the proposed
framework provides a further connection in the estimation
of model sets for robust control.
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