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Abstract— Next-generation motion systems are expected to
exhibit dominant flexible dynamical behavior. As a result, a
dynamic relation between the measured variables and the
performance variables is inevitable. The aim of the present
paper is i) to develop a control framework to deal with
unmeasured performance variables and ii) to implement the
proposed methodology on a prototype experimental setup. A
system identification for robust inferential control approach is
pursued. Indeed, in the case that the performance variables
cannot be measured directly, then these can be inferred from
the measurements by means of a model. Experimental results i)
confirm that prior approaches that aim at an improved response
in terms of the measured variables can result in a deteriorated
performance and ii) reveal that the proposed framework enables
high performance robust inferential control.

I. INTRODUCTION

Increasing speed and accuracy demands in high precision

positioning systems, e.g., used in integrated circuit (IC)

manufacturing, require next-generation motion control to

deal with flexible dynamical behavior. On the one hand,

these systems are expected to be lightweight in the near

future, since by virtue of Newton’s law, reducing the mass

of the system implies increasing accelerations and thus

increasing the speed. As a consequence of these lightweight

constructions, these systems exhibit flexible dynamical be-

havior at lower frequencies. On the other hand, due to

increasing accuracy requirements, control has to be effective

at higher frequencies. Combining these developments reveals

that control has to deal with flexible dynamical behavior in

the cross-over frequency region, see also [1] for a related

problem in vibration control.

An important consequence of the presence of flexible

dynamical behavior in positioning systems is the inevitable

situation of unmeasured performance variables. Indeed, it

is generally impossible to measure exactly on the location

where performance is required, since at this location a

product is being processed. Due to the presence of flexible

dynamical behavior, a dynamic relation between the mea-

sured variables and performance variables is present. The

presence of this dynamic relation complicates the controller

design compared to traditional situations. Specifically, the

systems can be considered rigid in traditional situations. As

a result, in this traditional situation, a static relation between

the performance variables and measured variables exists,

which can, e.g., be determined from the system geometry.

The explicit distinction between performance variables and

measured variables can be dealt with by means of model-

based control design. In this case, a dynamic model is used to

infer the performance variables from the measured variables,
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either implicitly, e.g., in model-based optimal control, or

explicitly by constructing an observer. Such an approach is

referred to as inferential control. For the class of positioning

systems, system identification provides an inexpensive and

fast methodology to obtain the required models.

The observation that any model is a simplification of

reality has led to the development of system identification for

control, see, e.g., [2], [3], [4], [5], [6] for an overview. How-

ever, these system identification for control methodologies

are restricted to the case where the performance variables are

also measured variables. Although an exception is reported

in [7], the considered identification approach is less suitable

for motion systems, since it cannot deal with closed-loop

operation and is tailored towards model predictive control.

Recently, in [8], a framework has been presented that enables

the identification of models in view of robust inferential

control. The inferential identification and control framework

in [8] resolves three important deficiencies of earlier system

identification approaches for control: 1) the controller struc-

ture and control goal are extended, 2) control-relevant system

identification approaches for nominal model identification

are proposed, and 3) new model uncertainty structures are

developed. The use of robust control techniques is especially

crucial in the case of inferential control, since the inferred

performance variables hinges on the model quality.

Although system identification for control methodologies

have recently been extended in [8] to deal with the infer-

ential control situation, the potential hazards of unmeasured

performance variables and benefits of the inferential control

framework for a realistic system have not yet been investi-

gated. Indeed, applications of inferential control are mainly

limited to the area of process control, see, e.g., [9], [10].

The main contribution of the present paper is to present

and apply a framework for system identification for robust in-

ferential control that can deal with unmeasured performance

variables and to compare the results with standard system

identification for robust control approaches. Hereto, a proto-

type next-generation motion system is used that represents a

realistic scenario in next-generation motion control. A key

advantage of this system is that it enables access to the

performance variables for model building and performance

validation, which is obviously required at a certain point

in the control design. In the next section, the experimental

system, problem formulation, and approach in the paper are

discussed in more detail.

II. PROBLEM DEFINITION

A. Experimental setup

The prototype experimental system in Figure 1 is con-

sidered, which is specifically designed to exhibit dominant
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Fig. 1. Photograph of the experimental flexible beam setup, where À:
sensor s1, Á: sensor s2, Â: sensor s3, Ã: actuator a1, Ä: actuator a2, Å:
actuator a3, Æ: beam, Ç: leaf spring.

flexible dynamical behavior that is expected to arise in next-

generation positioning systems. The movable part of the

system consists of a steel beam of 500× 20× 2 mm. Four

motion degrees-of-freedom (DOFs) are fixed by means of

leaf springs. Hence, two motion DOFs remain, in addition

to flexible dynamical behavior, as is illustrated in Figure 2.

To enable the evaluation of newly developed control strate-

gies, the system is equipped with three inputs and three out-

puts. The inputs are current-driven voice-coil actuators. The

outputs are contactless fiberoptic sensors with an accuracy of

approximately 1 µm. The control system is implemented in

a PowerDAQ rapid prototyping environment in conjunction

with Matlab/Simulink at a sampling frequency of 1 kHz.

To mimic the inferential control situation, a specific input-

output selection is performed. For clarity of exposition, scalar

measurement and performance variables are considered in

the translational x-direction, as is defined in Figure 2. The

goal is to control the performance variable zp at the middle

of the beam, i.e., at sensor location s2. Hence, in the case

of noise-free measurements,

zp =
[

0 1 0
] [

s1 s2 s3
]T

.

To mimic the inferential control situation, s2 is unavailable

for the feedback controller. Instead, regarding the measured

variable yp, the response at the middle of the beam is

determined by averaging the outer sensors s1 and s3, i.e.,

yp =
[

1
2 0 1

2

] [

s1 s2 s3
]T

, (1)

which in fact corresponds to a sensor transformation based on

geometric relations as is indicated in Figure 2. Consequently,

a discrepancy between the measured variable yp and perfor-

mance variable zp may exist due to internal deformations of

the beam. The outer actuators are used to translate the beam:
[

a1 a2 a3
]T

=
[

1 0 1
]T

up (2)

where up is the manipulated input. Comparing (1), (2), and

Figure 1 reveals that up and yp are collocated, whereas up

and zp are non-collocated. The resulting system is given by
[

zp
yp

]

=

[

Pz

Py

]

up = Pup. (3)

The considered setup has close connections to many position-

ing systems. Specifically, a product typically is processed in

the middle and hence this is the location where performance

is required. On the other hand, measurements are performed

at the edges of the system. The goal of the inferential servo

s1 s2 s3

yp

zp

during
task

initial
situation

x

ϕ

Fig. 2. Schematic top view illustration of flexible beam setup.

problem is to minimize zref − zp, where zref is a predefined

reference trajectory, by the design of a controller

up = C(zref , yp). (4)

Throughout, the focus is on the design of a feedback con-

troller through optimization that is formalized next, where

J 9 denotes the control criterion that is defined more pre-

cisely in Section III.

Definition 1 (Inferential control goal): Given Po with the

interconnection (3) - (4), determine

Copt = argmin
C

J 9(Po, C). (5)

B. System identification for robust inferential control

1) Towards model-based robust control: The optimiza-

tion (5) cannot be solved directly since Po is unknown.

To perform the actual optimization, model knowledge is

exploited. For the considered class of electromechanical

systems, this knowledge can be obtained in a fast, accurate,

and inexpensive manner through system identification. Since

the model is used for subsequent control design, a low-order

model description is essential.

The choice for a specific system identification and ro-

bust control approach hinges on the (expected) main error

sources. For the considered system, the system behavior

is expected to be mainly linear and time invariant. With

respect to expected error sources, two aspects are important.

On the one hand, systematic errors are expected to be

dominant. Firstly, the considered flexible system generally

has infinitely many flexible modes, as is discussed in [11].

Hence, the model cannot be parameterized such that there

exists a finite dimensional parameter vector that corresponds

to the true system. Consequently, undermodeling is always

present. Additionally, smooth nonlinearities, e.g., introduced

by nonlinear damping effects, typically are present, see [12].

On the other hand, if the model is identified from data, then

errors are introduced by finite time noisy observations. For

the considered system that has a high signal-to-noise ratio

and a large experimental freedom, these errors can be made

arbitrarily small by an appropriate experiment design.

2) Towards system identification for robust control: Due

to the presence of model inaccuracies, the model quality

should be evaluated in terms of its goal. In addition, a single

nominal model is inadequate to represent the full system

behavior. Thereto, a model set is considered, i.e.,

P =
{

P |P = Fu(Ĥ,∆),∆ ∈ ∆

}

,

where Fu denotes the upper linear fractional transformation

(LFT), ∆ ⊂ RH∞, and Ĥ contains P̂ and the uncertainty

structure, see Section V. Such H∞-norm-bounded perturba-

tions encompass a large class of errors, including dynamic

uncertainty due to undermodeling and certain nonlinearities.
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Associated with P is the worst-case performance

J 9
WC(P, C) = sup

P∈P

J 9(P,C)

Control design aiming at robust performance then involves

CRP9 = argmin
C

J 9
WC(P, C). (6)

Two requirements are imposed with respect to P . Firstly, the

constraint

Po ∈ P(P̂ ,∆). (7)

should be satisfied to guarantee that CRP9 stabilizes Po.

Secondly, CRP9 should achieve good robust performance.

Thus, a system identification for robust control procedure

should deliver a model set P such that it delivers a minimum

value of J 9
WC(P, CRP9). However, CRP9 depends in a

complicated, non-analytic manner on P , hence the use of

CRP9 as an identification criterion is not directly possible.

Thereto, as in [8], an upper bound is employed, leading to

the following robust-control-relevant identification criterion.
Definition 2 (Robust-control-relevant identification):

Given a stabilizing controller Cexp, determine

PRCR = argmin
P

J 9
WC(P, Cexp) subject to (7). (8)

The criterion (8) provides an upper bound for the ideal

criterion, i.e., the bound

JWC(P, CRP) ≤ JWC(P, Cexp)

holds for any P . The robust-control-relevant identification

criterion in Definition 2 extends the procedure in [13] by

addressing the inferential control situation. Note that a stabi-

lizing controller Cexp is required, see [13] for a discussion.

The controller Cexp used in this paper is a PID-controller,

see Figure 7. In addition, the criterion (8) is at the basis of

certain iterative identification and robust control approaches,

including [14], [8].

C. Approach and outline

In view of the system identification for robust inferential

control approach presented in Section II-B, the following

procedure is followed in this paper.
1) A novel controller goal based on H∞-optimization and

extended controller structures are presented in Section III that

are suitable for inferential servo control.
2) A procedure for the identification of a control-relevant

model P̂ is presented and applied to the experimental setup

in Section IV.
3) A novel model uncertainty structure that can deal with

the inferential control situation is presented in Section V and

it is shown that this structure in conjunction with the nominal

modeling procedure in Section IV jointly aim at identifying

a robust-control-relevant model set in view of Definition 2.
4) The synthesis and implementation of robust optimal

inferential controllers is presented in Section VI, as well as

a comparison with prior results.

III. H∞-OPTIMAL INFERENTIAL CONTROL

The inferential control problem requires several extensions

to the control structure and control goal. With respect to the

controller structure, it is argued in [8] that a single DOF

controller is inadequate for the inferential control case. As

C

P

r2

r3

r1 up

yp

zp

ez
−

Tr

−
u

}z

} y

{w
Ḡ(P )

Fig. 3. Standard plant configuration for inferential control.

a supporting example, note that the involved error signal

cannot be computed directly since yp and zp may have

different dimensions in the general situation. Among the

various alternatives, it is argued in [8] that the two DOF

controller

C =
[

C1 C2

]

(9)

has certain advantageous properties.

The controller (9) and the inferential servo goal discussed

in Section II differ from the commonly used formulation in

system identification for control, which is based on single

DOF controllers and associated controller goals based on 4-

block problems. To deal with the inferential servo goal and

controller (9), the extended control goal

J 9(P,C) = ‖M(P,C)‖∞ . (10)

M(P,C) : w 7→ z = WFl(Ḡ(P ), C)V (11)

is considered, where Ḡ(P ) is defined by the operator
[

z
y

]

= Ḡ(P )

[

w
u

]

, and the involved signals are defined

in Figure 3. Also, the bistable weighting filters W =
diag (We,Wy,Wu) and V = diag (V3, V2, V1) are consid-

ered and Tr is a stable reference model.

The following remarks are appropriate with respect to the

weighting filter design.

1) The criterion J 9 in (10) enables the specification of

versatile control goals through the use of weighting filters

and guarantees internal stability of the closed-loop system,

see [8, Proposition 4].

2) The weighting filter selection can be based on an

identified frequency response function of the system P ,

which is discussed in Section IV.

3) The weighting filters Wy,Wu, V2, V1 are based on an

H∞-loopshaping control design, see, e.g., [15]. As a result,

a standard controller that aims at a good response in terms

of the measured variables can be computed for comparison.

Specifically, the controller

CRP4 = argmin
C

sup
P∈P

∥

∥

∥

∥

[

WyPy

Wu

]

(I + CPy)
−1 [CV2 V1]

∥

∥

∥

∥

∞

(12)

is compared with CRP9 in Section VI. Further details of the

weighting filter selection can be found in [16, Chapter 7].

IV. NOMINAL MODEL IDENTIFICATION FOR CONTROL

As is discussed in Section II, a robust-control-relevant

model set PRCR is to be identified, where the control

criterion is given by (10). The first step in the construction

of a robust-control-relevant model set is the identification

of a nominal model P̂ , followed by the quantification of
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model uncertainty ∆ in Section V, where it is also shown

that these separate steps jointly aim at identifying a robust-

control-relevant model set.

The rationale behind identifying a control-relevant model

stems from the triangle inequality

‖M(Po, C)‖∞ ≤ ‖M(P̂ , C)‖∞+‖M(Po, C)−M(P̂ , C)‖∞.

Specifically, by substituting Cexp in the latter expression, the

following control-relevant identification criterion is obtained.

Definition 3: The control-relevant identification criterion

is defined as

P̂ = argmin
P

‖M(Po, C
exp)−M(P,Cexp)‖∞. (13)

Clearly, knowledge regarding M(Po, C
exp) is required to

solve (13). This knowledge is obtained from data in a

frequency response-based procedure, as is discussed below.

The control-relevant identification criterion in Definition 3

differs from the results in [13] by considering a more general

control goal and control structure. The distinction is even

more pronounced when the control-relevant identification

criterion is recast as a coprime factor optimization problem

as is considered next.

To anticipate on the results in Section V, it turns out that

a coprime factorization of the nominal model is essential to

construct a model uncertainty that is guaranteed to satisfy

(7) for a certain H∞-norm-bounded perturbation ∆. A main

results in [8] is that the 9-block control-relevant identification

criterion in Definition 3 can be recast as the 3-block problem
∥

∥

∥

∥

∥

∥

W





[

Nz,o

No

Do

]

−





N̂z

N̂

D̂









∥

∥

∥

∥

∥

∥

∞

,

[

Nz

N
D

]

=

[

Pz

Py

I

]

(D̃e + Ñe,2V
−1

2 Py)
−1

.

(14)

In (14), D̃e and Ñe,2 can be computed from Cexp and V ,

see [8]. The advantage of the formulation (14) is twofold.

Firstly, it reduces the complexity of the problem by a factor

three. Secondly, it is shown in [8] that the pair {N,D} is

a right coprime factorization of Py and the pair {Nz, D}
is a stable factorization of Pz, which is essential for the

subsequent developments in Section V.

To select weighting filters and to understand the behavior

of the open-loop system Po, it is useful to compute the

frequency response function of the open-loop system. Indeed,

Po(ω) =
[

Nz,o(ω) No(ω)
]T

(Do(ω))
−1

, see Figure 5 for

the results. Based on a thorough analysis, the following

interpretation is given.

1) The digital computer implementation introduces delay.

2) The resonance phenomena at 4 Hz and 10 Hz corre-

spond to rigid-body modes suspended by the leaf springs.

3) Up to 300 Hz, Py,o has a −2 slope due to collocation

of yp and up as explained in Section II-A.

4) At ≈ 32 Hz, P shows a different behavior than Py,o,

since the slope changes from −2 to −4. This corresponds to

the first bending mode of the beam and non-collocation of

up and zp, which is schematically illustrated in Figure 2.

Next, weighting filters W and V are designed using the

frequency response function in Figure 5, hence all ingredients

are present to identify a control-relevant nominal model.

Coprime factors of the true system, i.e., Nz,o, No, Do are

identified and a parametric model N̂z, N̂ , D̂ is estimated

using the frequency domain system identification algorithm
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Fig. 4. Bode magnitude diagram of identified frequency response func-

tion of Nz,o, No, Do (solid) and identified parametric model N̂z , N̂ , D̂
(dashed).

10
0

10
1

10
2

−60

−40

−20

0

20

|P
|
[d
B
]

10
0

10
1

10
2

−180

−90

0

90

180

6
P

[◦
]

f [Hz]

Fig. 5. Frequency response function estimate Pz,o(ω) (solid), Py,o(ω)
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described in [8], see Figure 4. The advantage of the coprime

factor domain in Figure 4 is that by virtue of the criterion

(14), the parametric model should be accurate in the region

where the gain of the coprime factors is large. Clearly,

the coprime factor model is control-relevant from visual

inspection of Figure 4.

V. TOWARDS ROBUST-CONTROL-RELEVANT MODEL SETS

As is discussed in Section II, the model P̂ inevitably is

an approximation of Po. Hence, it remains to quantify the

model quality. In view of the control goal of the model, this

amounts to constructing a model set in view of Definition 2.

Two aspects are important: the model uncertainty i) structure,

and ii) size.

A. Model uncertainty structure

Since the LFT of an LFT is again an LFT, M(P,C) in

(11) for any P ∈ P can be written as Fu(M̂,∆), where

∆ ∈ ∆ ⊂ H∞. Next, (10) yields

J 9
WC(P, Cexp) = sup

∆∈∆

‖M̂22 + M̂21∆(I − M̂11∆)−1M̂12‖∞, (15)

The use of general uncertainty structures, including additive

uncertainty, may have two disadvantages: 1) (7) may not be

satisfied for an admissible ∆u ∈ H∞, and 2) the connection

between (15) and (8) is not clear and consequently the

resulting model set may not be robust-control-relevant.

To resolve these two disadvantages, the specific co-

prime factorization of (14), in conjunction with a (Wu,Wy)-

normalized coprime factorization of C
exp
2 given by

{Nc,2, Dc,22} is used to construct the model set
{

P
∣

∣P =

[

N̂z +W
−1
e ∆z

N̂ +Dc,22∆u

]

(D −Nc,2∆u)
−1,

[

∆z

∆u

]

∈ RH∞

}

.

(16)
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TABLE I

ROBUST-CONTROL-RELEVANT IDENTIFICATION AND ROBUST

CONTROLLER SYNTHESIS RESULTS.

Cexp CRP4 CRP9

J 4(P̂y, C) 123.01 4.09 −

J 9(P̂ , C) 196.82 41.18 9.34
J 4
WC(P

RCR, C) 125.50 4.10 −

J 9
WC(P

RCR, C) 201.38 49.45 10.88

Compared to (15), the model set (16) leads to the stronger

result

J 9
WC(P, Cexp) ≤ ‖M̂22‖∞ + sup

∆∈∆

‖∆‖∞, (17)

see [8], where ∆ =
[

∆T
z ∆T

u

]T
. The result (16) is an

significant extension of the dual-Youla-Kučera-based uncer-

tainty structure, e.g., as is considered in [17], [18], in two as-

pects: i) it extends existing results to the two DOF controller

(9) and associated control goal (10), and ii) besides rendering

M̂11 to zero, it removes M̂21 and M̂12 from the expression

(15) by exploiting the freedom in coprime factorizations.

The importance of the result (17) is at least twofold: 1) it

connects the size of ∆ and the control criterion, hence in

conjunction with the result (14) it provides a solution to

the robust-control-relevant identification problem 2, and 2) it

enables the use of unstructured model uncertainty, hence

the controller synthesis problem (6) and (12) can be solved

efficiently.

B. Model uncertainty size

To evaluate the model quality of P̂ , a large number of val-

idation experiments are performed under relevant operating

conditions. Subsequently, the validation-based uncertainty

modeling procedure of [19] is employed, which is especially

useful in view of the relevant error sources in Section II-

B.1. The size of model uncertainty in the model uncertainty

structure (16) is given by sup∆∈∆ ‖∆‖∞ ≤ 5.6.
The resulting model set is, similar to the results in

Figure 4, formulated in an abstract coprime factor domain.

Thereto, the procedure in [20], which is based on gener-

alizations of the structured singular value, is adopted to

visualize the candidate model in terms of the open-loop

system behavior. The results are depicted in Figure 6. It

appears that the model is most accurate around the desired

cross-over region at approximately 50 Hz, see [20] for a

further interpretation.

The performance of the model (set) can also be quantified

in terms of the control criterion (10). Indeed, from Table I, it

is observed that the nominal model P̂ achieves a performance

of J 9(P̂ , C) = 196.82. The uncertain models satisfy a

bound equal to J 9
WC(P

RCR, C) = 201.38. Since the norm

bound on ∆u equals 5.6, the bound in (17) indeed is satisfied.

VI. ROBUST CONTROL DESIGN

In this section, robust controllers are synthesized for the

model set P as described in Section IV and Section V

using the inferential control design framework based on

H∞-optimization as described in Section III. Hereto, two

controllers are synthesized

1) a robust inferential controller CRP9 as in (6) and
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Fig. 6. Bode magnitude diagram: frequency response function correspond-

ing to Figure 5 (dot), nominal model P̂ (solid), model set P (shaded).
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Fig. 7. Bode diagram of controller: robust inferential controller CRP9

(solid), robust 4-block controller CRP4 (dashed), initial controller Cexp

(dash-dotted). Left: C1, right: C2.

2) a standard 4-block controller CRP4 as in (12) using

standard robust control design approaches, i.e., using a single

DOF controller and 4-block criterion.

Identical weighting filters are used for the synthesis of CRP4

and CRP9, thereby enabling a fair comparison of the results.

The resulting controllers are depicted in Figure 7. Clearly,

CRP9 and CRP4 have a significantly higher gain compared to

the initial controller Cexp. Also, it can clearly be observed

that CRP4 is a single DOF controller, while CRP9 indeed

exploits the additional controller freedom.

The controller performance in the criterion (10) is given

in Table I. Observe that CRP9 results in a value of

J 9
WC(P, CRP9) = 10.88. The controller CRP4, which

aims at minimizing J 4
WC, yet analyzed in terms of the

inferential performance criterion, leads to a performance of

J 9
WC(P, CRP4) = 49.45.

Finally, the controllers are implemented on the experimen-

tal system in Figure 1. The resulting step responses of the zp
and yp variables are depicted in Figure 8. It is emphasized

that none of the controllers has access to the performance

variable zp. Hence, the measurement of zp is only used for

an a posteriori analysis of the performance variables. The

following observations are made

1) Controller CRP4 significantly improves the response in

terms of yp compared to the initial controller Cexp, which is

in correspondence with the results regarding J 4
WC in Table I.

2) However, controller CRP4 also results in a poor per-

formance, i.e., the response in terms of the zp variable,

when compared to the response in terms of yp. Note that

this leads to a potentially dangerous situation, since the poor

performance in terms of zp cannot be observed from signals

inside the single DOF feedback loop.

3) When analyzing the response of the robust inferential

controller CRP9, it appears that it results in a peculiar

response with respect to the yp variable at 0.07 s. When

analyzing the performance variable zp, the reason for this

oscillation becomes clear, since the peculiar response seems

required to ensure that zp has a desired response. Indeed,
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Fig. 8. Experimental step responses using robust inferential controller
CRP9 (solid), robust 4-block controller CRP4 (dashed), initial controller
Cexp.

the trajectories of zp and yp are inherently coupled, hence a

single input up cannot result in an arbitrary response in terms

of both zp and yp. Similar responses have been observed in

other systems where performance variables and measured

variables can be distinguished, including optimal control of

overhead cranes, see [21].
4) Comparing the robust inferential controller with the

standard 4-block controller, it is clear from Figure 8 that

CRP9 results in a significantly better performance compared

to CRP4. This is also in agreement with the results in Table I,

since J 9
WC(P, CRP9) < J 9

WC(P, CRP4).
The conclusions are twofold. In the situation where a

dynamic relation is present between the measured variables

and performance variables
1) standard feedback control designs that aim at a good

response in terms of the measured variables may lead to poor

performance. It is emphasized that this can lead to potentially

dangerous situations, since the poor performance cannot be

detected from the single DOF feedback loop.
2) the proposed robust inferential control situation appro-

priately deals with the unmeasured performance variables

by (implicitly) inferring these from the measured variables

through a model.

VII. CONCLUSIONS

In this paper, a novel system identification and robust

control design framework with experimental verification on

a prototype next-generation motion system is presented that

appropriately deals with unmeasured performance variables

during normal operation. The main conclusions are twofold.
Firstly, it is shown that although common control design

techniques, such as the robust H∞-loopshaping controller

CRP4, can significantly improve the response in terms of

the measured variables, these techniques may lead to a

deteriorated performance in terms of the performance vari-

ables. This is a potentially dangerous situation, since the

poor performance cannot be detected from signals within the

feedback control loop. Of course, the poor performance will

be detected when using the system for a specific task, e.g.,

it may lead to defective products, but in this case it may be

unclear how the feedback control design should be adjusted.
Secondly, it is shown that the proposed system identifica-

tion and robust control design methodology can result in high

inferential performance. The key step is to use model knowl-

edge to infer the performance variables from the measured

variables. This model is identified using a temporary sensor

during the identification step that is not available during

normal operation of the system. This assumption is not

considered restrictive, since the sensor is not required during

normal operation. Furthermore, the model quality is tuned

towards the control goal to enable high performance control.

Also, since the model is used for inferring the performance

variables, the performance hinges on the model quality. This

motivates the need for an uncertainty model and a robust

control design. Both the control-relevant identification and

model uncertainty are aimed at the identification of a robust-

control-relevant model set, enabling high performance robust

inferential control. Experimental results confirm that the

proposed procedure indeed outperforms prior control design

techniques and enables the high performance control design

for next-generation positioning systems exhibiting flexible

dynamical behavior.
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