On the Properties of Iterative Schemes

Tom Oomen, Cristian R. Rojas, Håkan Hjalmarsson, Bo Wahlberg

Background
The idea of using iterative experiments appears in many system identification approaches. In this research, the value of iterations and the limits of accuracy are investigated.

\(\ell_2 \)-Induced Gain Estimation
Case study: gain estimation [1]
- perform iterative experiments on \(G \), see Fig. 1 (left)
- corresponding transfer function: Fig. 1 (right)
- resulting \(u_k \) for \(k \rightarrow \infty \):
 - sinusoid with frequency \(\omega^* \)
 - result: \(\lim_{k \rightarrow \infty} \gamma_k = \lim_{k \rightarrow \infty} \| u_k \|_2 = \| G \|_\infty \)
 - resembles power iterations method

Extended setup
A more realistic setup is considered in Fig. 2, including
- noise: \(\varepsilon_k \) is assumed ZMWN with variance \(\lambda_e \)
- normalization: \(\alpha_k \) due to bound on \(\| u_k \|_2 \)

Analysis
Resulting Spectrum
The extended setup in Fig. 2 is investigated through a spectral analysis. Assuming convergence for \(k \rightarrow \infty \), then

\[
\Phi_{u_k}(\omega) = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |G(\omega)|^2 \Phi_{u_k}(\omega)d\omega + \lambda_e \right) - |G(\omega)|^2
\]

Observations:
- \(\Phi_{u_k}(\omega) \) has maximum at \(\omega^* \)
- \(\Phi_{u_k}(\omega) \geq \lambda_e \)

Convergence Analysis
Extended system satisfying eigenvalue equation
\[
\frac{1}{\alpha_\infty^2} \left[\Phi_{u_k}(\omega) \right] = \left[\frac{1}{\pi} \int_{-\pi}^{\pi} |G(\omega)|^2 \Phi_{u_k}(\omega)d\omega + \lambda_e \right] \left[\Phi_{u_k}(\omega) \right]
\]
- convergence proof via Hilbert projective metric [2]
- \(\omega \)-discretization: computation of \(\Phi_{u_k}(\omega) \) for given \(G \)

Example
Given \(G \) in Fig. 1, (1) gives \(\Phi_{u_k}(\omega) \) in Fig. 3.

Implications
Bias Analysis for Non-Parametric Estimation
The nonparametric estimator in [1] can be written as

\[
\hat{\gamma}_k = \sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} |G(\omega)|^2 \Phi_{u_k-1}(\omega)d\omega}
\]

Combining this with the limit spectrum \(\Phi_{u_\infty} \) reveals
- \(\hat{\gamma}_\infty = \| G \|_\infty \) for \(\lambda_e = 0 \)
- \(\hat{\gamma}_\infty < \| G \|_\infty \) for \(\lambda_e > 0 \) (biased)

Limits of Accuracy
Fisher information matrix
\[
I_\theta = \sum_{i=1}^{k} \frac{1}{2\pi \lambda_e} \int_{-\pi}^{\pi} G'(e^{i\omega}, \theta) \Phi_{u_i}(\omega) \left(G'(e^{-j\omega}, \theta) \right)^T d\omega
\]
- additivity property
 - only increase of information for increasing \(k \)
 - if \(\psi_{u_i}(\omega) = \delta(\omega - \omega^*) \)
 - optimal accuracy for \(G(\omega^*) \) for FIR model [3]

Final Remarks
Analysis of iterative experiments in identification
- case study: non-parametric \(\ell_2 \)-gain estimation

Present extensions
- finite time implementation: time reversal
- only one experiment per iteration
- MIMO: multiple experiments per iteration
- nonparametric Hankel-norm estimation

Future work: analysis of the value of iterations in
- iterative learning control
- iterative identification and control
- iterative feedback tuning

References