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Abstract: In the last decades, many iterative approaches in the field of system identification
for control have been proposed. Many successful implementations have been reported, despite
the lack of a solid analysis with respect to the convergence and value of these iterations.
The aim of this paper is to present a thorough analysis of a specific iterative algorithm
that involves nonparametric H∞-norm estimation. The pursued approach involves a novel
frequency domain approach that appropriately deals with additive stochastic disturbances and
input normalization. The results of the novel convergence analysis are twofold: i) the presence
of additive disturbances introduces a bias in the estimation procedure, and ii) the iterative
procedure can be interpreted as experiment design for H∞-norm estimation, revealing the value
of iterations and limits of accuracy in terms of the Fisher information matrix. The results are
confirmed by means of a simulation example.

1. INTRODUCTION

In the last decades, many iterative approaches have been
proposed in the fields of system identification and control
design. Examples of such iterative approaches include iter-
ative learning control (ILC) [Bristow et al., 2006], iterative
feedback tuning [Hjalmarsson, 2002], and iterative identi-
fication and control [Albertos and Sala, 2002]. Although
many successful implementations of these approaches have
been reported in the literature, the application of these
techniques has met mixed outcomes. Indeed, analyses of
specific approaches have pointed out several shortcomings.
For instance, in the case of iterative identification and con-
trol design, the stationary point of the iterative algorithm
may not be a local minimum of the objective function as
is pointed out in Hjalmarsson et al. [1995]. Furthermore,
the iterations in these approaches may be divergent, see,
e.g., Albertos and Sala [2002, Sec. 9.3]. Finally, the value
of iterations in these approaches has been questioned in,
e.g., Böling and Mäkilä [1998].

Recently, an iterative approach for nonparametric H∞-
norm estimation has been proposed in Hjalmarsson [2005,
Sec. 12.2] and further extended in Wahlberg et al. [2010a].
A relevant application of H∞-norm estimation includes
model error modeling, since reliable robust control design
methodologies are available that consider model errors
as H∞-norm bounded operators. In contrast to most
model error modeling techniques, including Hakvoort and
Van den Hof [1997], Ljung [1999a], the approach presented
in [Hjalmarsson, 2005, Sec. 12.2] does not require the
estimation of an intermediate parametric model. Indeed,
in Hjalmarsson [2005, Sec. 12.2], the input to the system
is iteratively determined, followed by a nonparametric
estimation of the H∞-norm from the measured data of
two experiments. An essential property of the iterative

procedure is that it is known to converge to the global
optimum with an exponential rate of convergence in the
noise-free case, since in this case it coincides with a power
iteration [Golub and Van Loan, 1996, Section 8.2].

Although several successful applications of iterative non-
parametric H∞-norm estimation have already been re-
ported, including Barenthin et al. [2005], Barenthin et al.
[2006], convergence of the considered algorithm has not
been analyzed in a stochastic framework. Indeed, when
performing experiments on any realistic system, measure-
ment errors and unmeasured disturbances inevitably con-
taminate the observation. A suitable approach to model
these measurement errors and unmeasured disturbances is
to consider these in a stochastic framework. The aim of the
present paper is to thoroughly analyze convergence, bias,
accuracy, and the value of iterations of a certain iterative
nonparametric norm estimation algorithm that is subject
to additive stochastic disturbances.

Related analyses of power iterations that are implemented
in an imperfect environment are reported in Krasulina
[1970] and Oja and Karhunen [1985], where the involved
matrices are considered random. However, the results for
the case of random matrices cannot be directly extended to
the case of additive stochastic disturbances that is relevant
for the considered system identification problem. Similarly,
in, e.g., Golub and Van Loan [1996], the effect of round-
off errors in power iterations has been discussed. However,
such round-off errors do not provide a suitable description
for additive disturbances.

The main contribution of the present paper is a thorough
stochastic analysis of a certain iterative nonparametric
norm estimation procedure. As specific contributions of
the paper: i) a novel algorithm is proposed for H∞-norm
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estimation based on a single experiment. In contrast, two
experiments are required in Wahlberg et al. [2010a]. ii) a
novel stochastic analysis of the iterative norm estimation
procedure, which is based on signal spectra, is presented.
The novelty of the presented analysis is that it addresses
both additive stochastic signals that represent measure-
ment errors and process disturbances as well as normaliza-
tion of the input to deal with input power constraints. iii) it
is shown that additive stochastic disturbances introduce
a bias in the considered nonparametric norm estimation
algorithm. iv) the value of iterations is established through
the Fisher information matrix, revealing that the iterative
algorithm can be interpreted as an optimal experiment
design approach for H∞-norm estimation for both para-
metric and nonparametric identification methodologies.

The outline of the paper is as follows. In Sec. 2, a non-
parametric H∞-norm estimation algorithm is presented,
where the estimation of the norm is based on a single
experiment. In Sec. 3, the limit spectra are derived and
their convergence is analyzed. Then, in Sec. 4, the derived
spectra are employed for a bias analysis of the resulting
estimator and for a derivation of the information matrix.
The derived results are illustrated by means of an example
in Sec. 5. In Sec. 6, concluding remarks are presented.
Several proofs are omitted due to space limitations. These
proofs are available in Oomen et al. [2011].

2. ITERATIVE NONPARAMETRIC H∞-NORM
ESTIMATION

Throughout, the asymptotically stable SISO LTI system

yt = G(z)ut + et =

∞
∑

k=0

gkut−k + et, t = 1, 2, . . . , (1)

is considered, see also Fig. 1, where ut denotes the quasi
stationary input to the system [Ljung, 1999b], yt is the
output, and et is white noise of variance λe > 0, repre-
senting measurement noise or a disturbance term, with et
and ut independent.

One of the key properties of the H∞-norm, i.e., ‖G‖∞ =
supω∈(−π,π] |G(ejω)|, is that it equals the ℓ2-induced norm,
since

‖G(z)‖∞ = sup
u∈ℓ2

‖y‖2
‖u‖2

, (2)

where ‖x‖2 :=
(
∑∞

t=1 x
2
t

)
1
2 . The characterization of the

H∞-norm in (2) is useful for several reasons. Firstly, it is an
induced norm and thus enables the representation of model
uncertainty byH∞-norm bounded operators. Secondly, (2)
is at the basis of the nonparametric H∞-norm estimation
algorithms that are presented in this paper.

The following algorithm is the main result of this section
and enables nonparametric H∞-norm estimation.

Algorithm 1. Apply the following sequence of steps:

(1) Let n = 1 and generate an input sequence u(1) :=

[u
(1)
1 · · ·u(1)N ]T such that ‖u(1)‖2/

√
N = 1.

(2) Apply u(n) to the system, yielding y(n) := [y
(n)
1 · · · y(n)N ]T .

(3) Time reverse the sequence y(n), i.e., determine ỹ(n) :=

[y
(n)
N · · · y(n)1 ]T , and generate u(n+1) = ỹ(n)

µ(n) , where the

normalization µ(n) is defined below.
(4) Let n 7→ n+ 1 and go to step (2).

G

e

yu

Fig. 1. Considered system.

In Step 3 of Algorithm 1, the normalization

µ(n) :=
‖ỹ(n)‖2√

N
. (3)

is applied. The normalization (3) constrains the input
power to unity and is essential in practical applications,
e.g., for physical limitations or security reasons. Note that
the normalization to unity is nonrestrictive and introduced
for notational convenience. Also, the normalization µ(n)

can easily be adapted, e.g., to energy norm constraints or
maximum amplitude constraints.

Algorithm 1 generates sequences {u(n)}n∈N and {y(n)}n∈N,
from which the ℓ2-induced gain of G is estimated by

β̂(n) :=
[u(n)]T ỹ(n)√

N
. (4)

To show convergence of the estimate (4) to the H∞-norm
of the underlying system, i.e., ‖G‖∞, observe that in the
noise-free case, i.e., λe = 0, y(n) = Gu(n) and ỹ(n) =
T y(n), hence

ỹ(n) = GHu
(n), (5)

where

G :=







g0 0 0 · · · 0
g1 g0 0 · · · 0
...

. . .

gN−1 gN−2 · · · g0






, T :=







0 · · · 0 1
0 · · · 1 0
... . .

. ...

1 · · · 0 0






,

and

GH := T G =







gN−1 gN−2 · · · g0
gN−2 gN−3 0

... . .
.

g0 0 · · · 0






. (6)

Equation (5) leads to the following result.

Lemma 1. Assume that λmax(GH) is unique and that
u(1) has a nonzero component in the direction of the

eigenvector associated with λmax(GH). Then, β̂(n) →
λmax(GH) for n→ ∞.

See, e.g., [Golub and Van Loan, 1996, Section 7.3.1] for a
proof of Lemma 1. The following theorem establishes that

β̂(n) converges to ‖G‖∞ for N → ∞.

Theorem 2. Consider the systems G in (1) and GH in (6).
Then, ‖G‖∞ = limN→∞ |λmax(GH)|.

Lemma 1 and Theorem 2 imply that the estimate (4)
can be expected to be a reasonable estimate of ‖G‖∞ in
the noise-free case for a sufficiently long duration of each
experiment and after a sufficient number of iterations.

The following remarks are appropriate.

Remark 3. In Algorithm 1, a time reversal operator T is
introduced to enable the use of finite time experiments.
Specifically, if Algorithm 1 is implemented without the
time reversal operator in Step 3, then the procedure
estimates the first Markov coefficient g0 instead of the ℓ2
gain. Indeed, since G is a lower triangular Toeplitz matrix,
the eigenvalues of G equal the values on the diagonal.
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This phenomenon is introduced solely by the finite sample
effect. Indeed, for infinite N , G is an infinite matrix
representing a Toeplitz operator on ℓp, whose spectral
radius is ‖G‖∞, see, e.g., [Böttcher and Grudsky, 2005,
Corollary 1.12]. Note that the analysis in Section 3 is
performed in the frequency domain in terms of power
spectra, and leads to the same conclusions regardless of
whether the power iterations are applied to GTG or G.

Remark 4. To point out the relation between the pre-
sented approach, i.e., Algorithm 1 in conjunction with the
estimator (4), and the ℓ2-induced norm characterization
of the H∞-norm, i.e., (2), as well as to clarify the relation
with the algorithm in Wahlberg et al. [2010a] that requires
two experiments for nonparametric H∞-norm estimation,
observe that

sup
u(n)∈ℓ2

‖y(n)‖2
‖u(n)‖2

= sup
u(n)∈ℓ2

y(n)
T
y(n)

u(n)
T
u(n)

= sup
u(n)∈ℓ2

u(n)
T
GTGu(n)

u(n)
T
u(n)

which is clearly maximal if u(n) is in the eigenvector
direction corresponding to λmax(GTG). In Wahlberg et al.
[2010a], a power iteration is applied to GTG to esti-
mate the maximum gain, which requires two experiments
and two time reversal operations. Specifically, due to the
Toeplitz structure of G, GT = T GT , hence GTG =
T GT G. To show that the estimated gain for n → ∞ is
equivalent in the noise-free case, observe that since GH is
symmetric, it can be factorized as GH = QΛQT , where Q
is orthonormal and Λ is a diagonal matrix containing the
eigenvalues of GH . As a result, GTG = QΛQTQΛQT =
QΛ2QT , hence GTG has eigenvalues Λ2.

Remark 5. The eigenvalues of GH , unlike those of GTG,
see Remark 4, are not guaranteed to be positive. As

a result, β̂(n) = [u(n)]T ỹ(n)

√
N

may have a slow transient.

Specifically, an oscillatory transient may arise if the first
and second largest eigenvalues of GH have different sign.
For this reason, the estimator in Wahlberg et al. [2010a]
can be adapted to deal with the considered normalization
in the present paper that is applied after each experiment,
see Algorithm 1, in which case

β̂
(n)
2 =

√

µ(n−1)[u(n−1)]T ỹ(n). (7)

Estimator (7) may thus be preferable in the case where it
is desired to determine the absolute value of the maximum
eigenvalue. Specifically, the estimator β̂

(n)
2 corresponds to

the square root of λmax(G2
H) = λmax(GTG) and thus to

λmax(GH). SinceG2
H = GTG is positive semidefinite, β̂

(n)
2

does not suffer from a possible slow oscillatory transient.

Note that the analysis in this paper also applies to β̂
(n)
2 .

In the preceding analysis of Algorithm 1, it is assumed that
λe = 0, i.e., the noise-free situation. In the next section,
a stochastic analysis is performed for λe > 0. Then, in
Sec. 4, the estimators (4) and (7) are analyzed in detail.

3. CONVERGENCE ANALYSIS

In this section, a convergence analysis of Algorithm 1 is
presented in the case where additive stochastic distur-
bances are present, i.e., λe > 0 in (1). First, expressions
for the limit spectra are derived in Section 3.1, followed by
a convergence analysis in Section 3.2.

3.1 Limit Spectrum

In this section, Algorithm 1 is analyzed in the presence of
noise, i.e., in the case where λe > 0. The first step in the
analysis is to assume that N → ∞, i.e., the number of data
samples at each iteration tends to infinity. This enables

an analysis in the frequency domain in terms of Φ
(n)
u ∈

L1([−π, π],R+
0 ), i.e., the spectrum of ut at iteration n, see

[Ljung, 1999b, Chapter 2] for an appropriate definition.

It is important to notice that, for a finite N , the effect
of the time reversal operation T , which can be described
as a combination of a time shift (by N samples) plus a
time inversion, t 7→ −t, has no effect on the spectrum of a
quasi-stationary signal. This means that the time reversal
operation can be omitted in a frequency domain analysis
of the power iterations method, see also Remark 3.

Lemma 6. Consider Algorithm 1 applied to the system G
in (1), where λe > 0. Then, for N → ∞,

Φ(n+1)
u (ω) =

|G(ejω)|2Φ(n)
u (ω) + λe

1
2π

∫ π

−π
|G(ejω)|2Φ(n)

u (ω)dω + λe
. (8)

Proof. Combining (1) and Algorithm 1 yields

u(n+1) =
1

µ(k)
(Gu(n) + e(n)).

where µ(k) is defined in (3). Independence of u(n) and e(n)

implies that

Φ(n+1)
u (ω) =

1

(µ(k))2

(

|G(ejω)|2Φ(n)
u (ω) + λe

)

.

Finally, applying Parseval’s relation to µ(k) yields (8). 2

Next, fixed points of the function (8) are analyzed.

Theorem 7. The function (8) has a unique fixed point

Φ
(∞)
u , which is given by

Φ(∞)
u (ω) =

λe
µ2 − |G(ejω)|2 , (9)

where µ > 0 satisfies

1

λe
=

1

2π

∫ π

−π

1

µ2 − |G(ejω)|2 dω. (10)

Proof. Every such fixed point Φ
(∞)
u ∈ L1([−π, π],R+

0 )
satisfies the equation

Φ(∞)
u (ω) =

|G(ejω)|2Φ(∞)
u (ω) + λe

1
2π

∫ π

−π
|G(ejω)|2Φ(∞)

u (ω)dω + λe
. (11)

Denoting

µ2 =
1

2π

∫ π

−π

|G(ejω)|2Φ(∞)
u (ω)dω + λe (12)

and solving (11) for Φ
(∞)
u yields (9). In addition, the

resulting Φ
(∞)
u is unique. Next, to show (10), note that

substitution of (9) into (12) yields

µ2 =
1

2π

∫ π

−π

λe|G(ejω)|2 + λe(µ
2 − |G(ejω)|2)

µ2 − |G(ejω)|2 dω

= µ2 1

2π

∫ π

−π

λe
µ2 − |G(ejω)|2 dω.

Next, by nonnegativity of Φ
(∞)
u (ω), the latter equation

directly implies the desired result (10). 2
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The result of Theorem 7 enables the derivation of the
following properties of Φ

(∞)
u and µ as a function of λe.

Theorem 8. Consider the iteration (8), where the fixed
points satisfy the results in Theorem 7. Then,

(1) µ ≥ ‖G‖∞.

(2) Φ
(∞)
u (ω) attains its (finite) maximum at the frequen-

cies where |G(ejω)|2 is maximum.

(3) Φ
(∞)
u (ω) attains its (non-zero) minimum at the fre-

quencies where |G(ejω)|2 is minimum. Furthermore,

if |G(ejω)|2 → 0 at some ω, then Φ
(∞)
u (ω) → λe/µ

2.
(4) µ is a continuous and strictly increasing function of

λe, such that µ → ‖G‖∞ as λe → 0, and µ → ∞ as
λe → ∞.

The behavior of µ for λe ≪ 1 is analyzed next.

Theorem 9. Let G ∈ H∞(Ē), where Ē := {z ∈ C : |z| ≥
1}, be such that |G(ejω)|2 has a single global maximum in
[0, π] at, say, ω̂. Let

1

λe
=

1

2π

∫ π

−π

1

µ2(λe)− |G(ejω)|2 dω,

where λe > 0 and µ : R+
0 → (‖G‖∞,∞). Then,

µ2(λe) = ‖G‖2∞ +
2

Hµ

λ2e + o(λ2e),

where Hµ := −∂2|G(ejω)|2/∂ω2
∣

∣

ω=ω̂
.

Theorem 9 enables a qualitative analysis of µ2 as a
function of λe. For instance, in the case where the H∞-
norm is attained due to a dynamic phenomenon with low
damping, then Hµ is large and µ2 significantly decreases
as a function of λe.

3.2 Convergence to the Limit Spectrum

A remaining question is under which conditions the itera-

tions (8) converge to the fixed point Φ
(∞)
u . The main result

of this section is given by the following theorem.

Theorem 10. Let Φ
(1)
u ∈ L∞([−π, π],R+

0 ) be such that

infω{Φ(1)
u (ω)} > 0. Then, the sequence {Φ(n)

u }n∈N gen-

erated by (8) converges in the L∞ norm to Φ
(∞)
u in (9).

4. PROPERTIES OF THE ESTIMATOR

In this section, the results of Section 3 are employed to an-
alyze Algorithm 1 in Section 2. Specifically, in Section 4.1,
the bias of estimators 4 and (7) is analyzed, followed by
an analysis of the value of iterations in terms of the Fisher
information matrix in Section 4.2.

4.1 Bias Analysis

In this section, the bias of the nonparametric gain estimate
is analyzed. Throughout this section, the emphasis is
on the estimator in (7), since this enables a comparison
with the results in Wahlberg et al. [2010a], where a
similar estimator modulo the normalization is considered.
In Wahlberg et al. [2010a], it is shown that this estimator
is unbiased, provided that u(n−1) is in the eigenvector
direction corresponding to the largest eigenvalue of GTG,
which in the case N → ∞ corresponds to a sinusoidal

signal. These results are thus in line with the result of
Theorem 2 and the discussion in Remark 4.

However, the results in Theorem 8 reveal that the input
does not converge to the eigenvector direction correspond-
ing to the largest eigenvalue of GTG if λe > 0, since
even for N → ∞ the input u(n) does not converge to a
sinusoid. Hence the bias analysis in Wahlberg et al. [2010a]
of the power iteration procedure in a stochastic framework
is incomplete. The following result enables a more detailed

analysis of the estimator β̂(n).

Lemma 11. Consider the estimator (7). Then, forN → ∞,

E
{

[β̂(n)]2
}

=
1

2π

∫ π

−π

|G(ejω)|2Φ(n−1)
u (ω)dω. (13)

Proof. Observe that for N → ∞, the numerator and
denominator in (7) can be recast as a sample cross-
spectrum and a sample spectrum, respectively. Hence,
taking expectations,

E
{

[β̂(n)]2
}

= µ(n−1) 1

2π

∫ π

−π

Φy(n),u(n−1)(ω)dω

= µ(n−1) 1

2π

∫ π

−π

1

µ(n−1)
|G(ejω)|2Φ(n−1)

u (ω)dω,

which equals (13). 2

Lemma 11 in conjunction with Theorem 8 reveals several
qualitative results with respect to the bias of the limit

estimator β̂(∞). Indeed, note that for λe > 0, Φ
(∞)
u is a

smoothed Dirac delta function. Clearly, this implies that

E
{

[β̂(∞)]2
}

< ‖G‖2∞ for λe > 0, (14)

hence the power iterations result in a biased estimate of
the H∞-norm if λe > 0. Similarly, observe that if λe → 0,

then Φ
(∞)
u tends to a Dirac delta function. Exploiting the

sifting property of the Dirac delta function, and the fact

that the variance of β̂(n) goes to zero as λe → 0, reveals
that

β̂(∞) → ‖G‖∞ in mean, as λe → 0,

hence the estimator is unbiased if λe → 0.

A quantitative expression of the asymptotic bias of the
power method is given in the following theorem.

Theorem 12. Consider the estimator (7). Then, for N →
∞,

E
{

[β(∞)]2
}

= ‖G‖2∞ − λe +
2

H
λ2e + o(λ2e).

Proof. Lemma 11 reveals that for n→ ∞,

E
{

[β(∞)]2
}

=
1

2π

∫ π

−π

|G(ejω)|2Φ(∞)
u (ω)dω. (15)

Combining (15) and (12) yields

µ2 = E
{

[β(∞)]2
}

+ λe.

Next, rearranging and applying the result of Theorem 9
gives the following asymptotic expression for the bias:

E
{

[β(∞)]2
}

= µ2 − λe = ‖G‖2∞ − λe +
2

H
λ2e + o(λ2e),

which concludes the proof. 2

Theorem 12 shows that the asymptotic bias, E
{

[β(∞)]2
}

−
‖G‖2∞, is dominated by −λe in the small noise regime.
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Equivalently, E
{

[β(∞)]
}

− ‖G‖∞ = −(1/2)λe‖G‖−1
∞ +

o(λe)), which corroborates the previous analysis.

Furthermore, Theorem 12 shows that the normalization
factor, µ(n), which as n,N → ∞ is equal to µ, might be
a better estimator of ‖G‖∞ for small λe in terms of bias.
Indeed, observe that µ(n) can be interpreted as a direct
estimator for (2) by forming the product [y(n)]T y(n).

4.2 Fisher Information Matrix per Iteration

The value of iterations is immediate if the nonparametric
estimator (7) is used, since Theorem 2 reveals that the
estimate converges to the H∞-norm for λe = 0 and
an increasing number of iterations. However, the value
of power iterations has not yet been investigated in the
general case where possibly another estimator is used.
Independent of the specific estimator, the limit of accuracy
of the power iterations method can be analyzed through
the asymptotic information matrix. Hereto, an analysis
is performed where an underlying parametric model is
considered.

Specializing to the prediction error framework, let G(z, θ)
be a parametric model structure. Assuming that there
exists a θo, called the true parameter, such that G(z, θo) =
G, where G denotes the true system, then under mild
conditions √

N(θ̂N − θ∗)
d−→ N (0, Pθ),

see, e.g., [Ljung, 1999b, Chapter 9]. The prediction error
estimator turns out to be asymptotically efficient, i.e., the
asymptotic covariance matrix Pθ equals the inverse of the
(Fisher) information matrix, which is given by

Iθ = E
{

ψtΛ
−1ψT

t

}

. (16)

In addition,

ψt = − ∂εTt
∂θ

∣

∣

∣

∣

θ=θo

, (17)

where εt is the prediction error

εt = yt − ŷt|t−1. (18)

Evaluating the Fisher information matrix for the system
(1) and Algorithm (1) yields the following result.

Lemma 13. Consider system (1) and the power iterations
algorithm 1. Then,

Iθ =
n
∑

k=1

I
(k)
θ , (19)

where I
(k)
θ = 1

2πλe

∫ π

−π
G′(ejω)Φ(k)

u (ω)
(

G′(e−jω)
)T
dω and

G′(z) := ∂G(z, θ)/∂θ|θ=θo
.

Proof. Using (1) and (18), ε
(k)
t = y

(k)
t − ŷ

(k)
t|t−1. Clearly,

∂ε
(k)
t

∂θ
= −G′(q)u(k). Next, using (17),

ψt =

[

∂ε
(1)
t

∂θ

∂ε
(2)
t

∂θ
· · · ∂ε

(k)
t

∂θ

]

= G′(q)Ut,

where Ut :=
[

u
(1)
t u

(2)
t · · · u(k)t

]

. Next, using (16) and

Parseval’s relation,

Iθ = E
{

ψtΛ
−1ψT

t

}

=
1

λe
E
{

ψtψ
T
t

}

=
1

2πλe

∫ π

−π

G′(ejω)ΦU (ω)
(

G′(e−jω)
)T
dω.

Note that here

ΦU (ω) =

∞
∑

τ=−∞
RU (τ)e

−jτω, (20)

RU (τ) = lim
N→∞

1

N

N
∑

t=1

n
∑

k=1

u
(k)
t u

(k)
t−τ =

n
∑

k=1

Ru(k)(τ). (21)

Next, combining (20) and (21) yields (19). 2

Several interesting observations can be made with respect
to Lemma 13. Firstly, it is observed that the Fisher infor-
mation matrix for iterative schemes satisfies an additivity
property, see (19), i.e., additional experiments can only
increase information about the system. This is consistent
with Fisher’s original requirements for the definition of
information [Porat, 1994, page 59]. Secondly, due to the

uniform convergence of Φ
(n)
u , (19) divided by n corresponds

to a Cesàro sum, it holds in the asymptotic case where the
number of experiments n→ ∞,

lim
n→∞

Iθ
n

=
1

2πλe

∫ π

−π

G′(ejω, θ)Φ(∞)
u (ω)

(

G′(e−jω, θ)
)T
dω.

If λe → 0, then Φ
(∞)
u tends to a Dirac delta function.

In Wahlberg et al. [2010b] and Wahlberg et al., this is
shown to lead to optimal accuracy for estimating a peak
of |G(ejω)|. In this respect, the power iterations are of
value in the sense of iterative experiment design.

5. EXAMPLE

In this section, the results of the preceding sections are
illustrated. Specifically, the limit spectra are computed by
using the results of Sec. 3, followed by an analysis of the
bias corresponding to the theoretical results in Sec. 4.1.

Consider the system G given by

G(z) =
0.2155z−1 + 0.2012z−2

1− 0.9854z−1 + 0.8187z−2
.

A Bode magnitude diagram ofG is depicted in Fig. 2 (left).

First, the results of Theorem 8 are illustrated. Hereto, use
is made of an eigenvalue equation of an extended system
H that appears in the proof of Theorem 10, which will
be published elsewhere. Discretization of H in ω yields a
discrete frequency set Ω = {ω1, ω2, . . . , ωnω

}. This results
in the discretized operator

Hd =











|G(ω1)|
2 0 λe

. . .
...

0 |G(ωnω
)|2 λe

1

nω

|G(ω1)|
2 · · ·

1

nω

|G(ωnω
)|2 λe











.

Next, to compute the discretized spectrum Φ
(∞)
u,d (ω), ω ∈

Ω, a vector

λmax(Hd)









Φ
(∞)
u,d

(ω1)

...

Φ
(∞)
u,d

(ωnω
)

1









= Hd









Φ
(∞)
u,d

(ω1)

...

Φ
(∞)
u,d

(ωnω
)

1









has to be computed. The resulting spectrum for λe ∈
{1, 4, 9} (using nω = 1000) is depicted in Fig. 2 (right).
Considering Fig. 2 (left) in conjunction with Fig. 2 (right)
confirms Properties (1)-(4) in Theorem 8.

Next, to illustrate the behavior in the time domain and
analyze the bias, the estimate β(n) is computed for a
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Fig. 2. Left : Bode magnitude diagram of G. Right : limit spectrum

Φ
(∞)
u,d

(ω), λe = 1 (solid blue), λe = 4 (dashed red), λe = 9

(dash-dotted green).
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Fig. 3. Estimated gain β(n) during iterations. Left : noise variance
λe = 9: single realization (dash-dotted green), average over
1000 realizations (dashed black), finite time ℓ2-induced norm
(solid black). Right : Varying noise variance, averaged over 1000
realizations, λe = 1 (solid blue), λe = 4 (dashed red), λe = 9
(dash-dotted green), finite time ℓ2-induced norm (solid black).

realization of the iterative algorithm 1 with λe = 9, see
Fig. 3 (left). Due to the presence of et in (1), the estimate
β(n) is noisy as expected. To analyze the bias, 1000
realizations of the iterative procedure are averaged, see
Fig. 3 (left). The mean of β(n) over different realizations
of the iterative algorithm is strictly below the finite time
ℓ2-induced norm ofG, i.e.,

√

λmax(GTG), confirming (14).

Finally, 1000 realizations of the iterative procedure are
averaged for λe ∈ {1, 4, 9}, see Fig. 3 (right). It is observed
that the bias increases for increasing λe. From Lemma 11,
this can be understood when considering the smoothness
of G and the spectra in Fig. 2.

6. CONCLUSION

The results presented in this paper contribute to the anal-
ysis of the role of iterations in system identification for
control. An approach for nonparametric H∞-norm esti-
mation is presented that requires only one experiment for
the estimation procedure. In addition, it is shown that for
a nonparametric H∞-norm estimation through iterative
experiments, (1) additive disturbances can introduce bias
errors, and (2) iterative procedures can be interpreted as
experiment design for H∞-norm estimation, and the value
of iterations has been investigated by means of the Fisher
information matrix. The analysis is based on a frequency
domain approach, the novelty of the presented approach is
that it addresses both (1) additive stochastic disturbances
that represent measurement errors, and (2) the normal-
ization of the input signal to account for input power
constraints, which involves a nonlinear operation.

Future research includes the extension of the presented
results in several directions. Firstly, it is shown in the
present paper that the implementation of power iterations
in the presence of stochastic disturbances results in bias
errors. Presently, modifications of the input signal update,
i.e., Step 3 in Algorithm 1, as well as the estimators (4) and
(7) are being investigated to avoid these bias errors, e.g.,

by using data from old experiments through stochastic
approximation. Secondly, extensions of the power iteration
algorithm are being investigated that enable the nonpara-
metric estimation of other system properties.
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