On inversion-based approaches for feedforward and ILC

Jurgen van Zundert*, Tom Oomen

*Control Systems Technology, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

System inversion is at the basis of many feedforward and learning control algorithms. The aim of this paper is to analyze several of these approaches in view of their subsequent use, showing inappropriate use that is previously overlooked. This leads to different insights and new approaches for both feedforward and learning. The methods are compared in various aspects, including finite vs. infinite preview, exact vs. approximate, and quality of inversion in various norms which directly relates to their use. In addition, extensions to (non-square) multivariable and time-varying systems are presented. The results are validated on a nonminimum-phase benchmark system.

Keywords: Model inversion, Nonminimum phase, Feedforward control, ILC

1. Introduction

The quality of inversion depends on the goal one has in mind. The aim of this paper is to investigate, compare, and develop inversion techniques for the purpose of both feedforward and learning control. The model to be inverted includes the closed-loop process sensitivity in iterative learning control (ILC) [1, 2], the closed-loop complementary sensitivity in repetitive control [3], or the open-loop system in inverse model feedforward [4]. For nonminimum-phase or strictly proper systems, such inversion is not always straightforward. In addition, multivariable systems and time varying systems impose additional complications.

System inversion has received significant attention, also from a theoretical perspective [5]. Successful approximate solutions include [6], ZPETC [7], ZMETC, NPZ-Ignore [8], and EBZPETC [9], see also [10] for an overview. Additionally, standard H_∞ without preview has been used [11, 12] to design ILC filters, as well as H_∞ preview in feedforward [13, 14]. Furthermore, optimization-based approaches include techniques based on LQ tracking control [15], also known as norm-optimal ILC [16], where in addition to inversion a weight on the input signal is imposed. In [17], ZPETC, ZMETC, and a model matching approach are compared. The model matching approach is similar to the H_∞ preview control presented in the present work, yet without preview.

Although many algorithms and approaches are available for model inversion, the choice for a technique is sometimes made arbitrarily without a full understanding of the alternatives and their underlying mechanisms. For example, ZPETC is often used for the design of ILC filters, but requires an additional robustness filter at the cost of performance [2, 18]. Alternatively, infinite preview [19] or H_∞ based [11, 12] techniques can be used. However, [11, 12] lack the use of preview, and are recently extended in [20] towards preview/fixed lag smoothing situations.

This paper provides guidelines on proper use of inversion techniques for both inverse model feedforward and learning control by addressing the application specific objective. The aim of this paper is to compare existing approaches and provide several new approaches with clear benefits. In this regard, it extends [10, 21] with additional approaches, by explicitly addressing the control goal, and investigating applicability to non-square multivariable and time varying systems. It also extends [19] in which technical results on several algorithms are presented by evaluating them in a broader perspective.

The outline of the paper is as follows. In section 2, the inverse model feedforward and ILC optimization problems are cast in a single general framework, and the associated challenges, optimization criteria, and properties are presented. In section 3, the benchmark system used for assessing the inversion techniques is introduced. In section 4, the inversion techniques are presented. First, the well-known approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC, and the stable inversion technique are recapitulated. Second, inversion techniques based on norm-optimal feedforward/ILC is presented. Third, H_∞ and H_2 preview control are presented. In section 5, the techniques are evaluated on the benchmark system of section 3 in both a feedforward and an ILC setting. In section 6, a two-step approach for inversion of non-square systems is presented. In section 7, the one-step techniques of section 4 are extended to multivariable and time varying systems.
systems. Section 8 contains conclusions and recommendations.

Notation. Apart from section 7, discrete, single-input, single-output (SISO), linear, time invariant (LTI) systems are considered. In section 7, extensions to multi-input, multi-output (MIMO) and linear time varying (LTV) systems are presented. Let \(S = (1 + GC)^{-1} \) denote the sensitivity and \(\lambda_i(\cdot) \) the \(i \)th eigenvalue. A causal LTI system is referred to as stable (minimum phase) iff all poles (zeros) are inside the unit circle, otherwise the system is referred to as unstable (nonminimum phase). For ease of presentation, it is assumed that the inverted system is hyperbolic, i.e., contains no eigenvalues on the unit circle. Note that techniques as in [22] can be used to relax this condition.

2. Problem definition

In this section, the inverse model feedforward and ILC optimization problem is detailed, the common inversion problem is formulated, and the application specific criteria are defined.

2.1. Role of inversion for feedforward and ILC

Feedback and feedforward control are typically combined to achieve high performance. Feedback control can deal with uncertainty, but its performance is limited due to Bode’s sensitivity integral. For known signals, feedforward control can be used to achieve excellent performance. In the feedforward scheme of Fig. 1(a), the goal is to design feedforward \(f \) such that tracking error \(e = r - y \) is minimized, where \(r \) is the desired trajectory for output \(y \). If the system performs repetitive trajectories \(r \), information of the previous task \(j \) can be used to enhance the performance of the next task \(j+1 \) through iterative learning control (ILC). For the ILC scheme of Fig. 1(b), \(f_{j+1} \) is designed based on data \(e_j, f_j \) such that \(e_{j+1} = e_j - SG(f_{j+1} - f_j) \) is minimized.

Both the feedforward and the ILC design problem can be cast into the diagram of Fig. 1(c). As shown by Table 1, both problems are equivalent to finding an input \(u \) such that error \(e \) is minimized. System \(H \) can be an open-loop system as in feedforward (G) or a closed-loop system as in ILC (SG) and repetitive control (RC) (SGC).

2.2. On inversion

Consider the general block diagram in Fig. 1(c). Throughout, it is assumed that system \(H \) is proper with relative degree \(d \in \mathbb{N} \), has \(p \in \mathbb{N} \) nonminimum-phase zeros, and has state-space realization \((A, B, C, D) \). An immediate solution to minimize \(e \) is to select \(F = H^{-1} \), where

\[
H^{-1} = \begin{bmatrix} A - BD^{-1}C & BD^{-1} \\ -D^{-1}C & D^{-1} \end{bmatrix}.
\]

(1)

At least three challenges are associated with the direct use of (1):

I) Delay: for \(d > 0 \), \(H^{-1} \) does not exist since \(D \) is not invertible.

II) Non-square: systems with a different number of inputs then outputs cannot be directly inverted as in (1) since \(D \) is non-square.

III) Nonminimum-phase zeros: for \(p > 0 \), \(H^{-1} \) is unstable which, when solved forward in time, yields unbounded \(u \).

This paper mainly focuses on the third challenge.

Remark 1. The first issue can be overcome by inverting the bi-proper system \(\bar{H} = z^dH \), where the a-causal \(z^d \) is implemented as a time-shift on the time domain signal. Note that for an infinite time horizon, filtering the time-shifted signal with \(\bar{H} \) is equivalent to filtering the original signal with \(H \), whereas for a finite time horizon this might introduce boundary errors.

Remark 2. The second issue can be overcome by using the two-step procedure presented in section 6.

2.3. Criteria

Depending on \(H \), it might not be possible to achieve zero error \(e = 0 \). Therefore, the inversion techniques construct \(u \) given a certain criterion aimed at minimizing \(e \). The criterion depends on the particular application.
In feedforward, generally high performance in terms of the error e is pursued. Typically, this is enforced by minimizing the energy in the error signal through minimizing $\|e\|_2^2$ [23, 4].

In ILC, the main concern is to guarantee convergence in the error to ensure stability over trials. Superior performance is obtained by executing several trials. For update $f_{j+1} = f_j + Le_j$, see also Fig. 1(b), the error has trial dynamics $e_{j+1} = (1 - SGL) e_j$. Hence, to ensure the convergence of $\|e_j\|_2$ over trials it should hold $\|1 - SGL\|_\infty < 1$ [3]. Note that this is equivalent to monotonic convergence of $\|e_j - e_\infty\|_2$. Assuming this is feasible, the fastest convergence for arbitrary e_j is found by minimizing $\|1 - SGL\|_\infty$.

In the general block diagram of Fig. 1(c), this is equivalent to minimizing $\|W(1 - HF)\|_\infty$. Optionally, if convergence cannot be guaranteed, a robustness filter Q can be added as $f_{j+1} = Q(f_j + Le_j)$ with corresponding convergence condition $\|Q(1 - SGL)\|_\infty < 1$. If the model is uncertain, the condition can be evaluated for the uncertain model or for the frequency response function of SG.

2.4. Properties

In section 4, a variety of inversion techniques is presented. The main properties of these techniques are:

- Finite vs. infinite horizon design;
- Finite vs. infinite preview, i.e., the required amount of future input data;
- Applicability to SISO, MIMO, and non-square systems;
- Applicability to time invariant and time varying systems;
- Design objective.

An overview of these properties for the techniques in section 4 is listed in section 5.

3. Benchmark system

To validate the inversion techniques of section 4, the benchmark system shown in Fig. 2 is used. The same system is used in [19] for different purposes.

The open-loop system G from force u [N] to position y [m] in Fig. 2 is given by

$$G(z) = \frac{-3 \times 10^{-8}(z + 0.9632)(z - 0.9447)(z - 1.1410)}{(z - 1)^2(z^2 - 1.9595z + 0.9632)} ,$$

with sample time $h = 0.001$ s. The closed-loop system SG with feedback controller $C(z) = \frac{925(z - 0.9979)}{z - 0.9813}$ is given by

$$SG(z) = \frac{-3 \times 10^{-8}(z + 0.9632)(z - 0.9447)}{(z - 0.9901)(z^2 - 1.9903z + 0.9903)} \times \frac{(z - 1.1410)(z - 0.9813)}{(z^2 - 1.9605z + 0.9640)} .$$

For both $H = G$ in feedforward and $H = SG$ in ILC, the following observations can be made:

- H is stable ($|\lambda_i(H)| \leq 1$, $\forall i$);
- H has one nonminimum-phase zero $z = 1.1410$ ($p = 1$);
- H is strictly proper ($D = 0$) with relative degree $d = 1$ (see also Remark 1).

The step response for SG is shown in Fig. 3. Due to the single nonminimum-phase zero, the system initially moves in opposite direction [24].

The reference trajectory r is a fourth-order forward-backward motion of total length $N = 4201$ samples and depicted in Fig. 4. Time $t = 0$ is defined as the start of the movement. The zero values at the start and end of the trajectory allow for pre-actuation and post-actuation, respectively.

4. Overview of techniques

In this section, inversion techniques are presented, developed, and implemented on the benchmark system of section 3.
A key issue is that \(H(z) = \frac{B_u(z)}{A(z)} \) is nonminimum-phase, i.e., all stable poles are contained in \(A(z) \) and all unstable poles in \(B_u(z) \). Several techniques have been proposed to approximate the inverse of \(B_u(z) \), including NPZ-Ignore [8], zero-phase-error tracking control (ZPETC) [7], and zero-magnitude-error tracking control (ZMETC). The results for these approaches are summarized in Table 2. If \(H(z) \) is nonminimum phase, i.e. \(p > 0 \), then \(H(z)F(z) \neq 1 \) and stable. If \(H(z) \) is minimum phase, i.e. \(p = 0 \), all three approaches are identical and exact: \(H(z)F(z) = 1 \). More background on these approaches can be found in Appendix A. See, for example, [10] for a comparison.

4.1.1. Approach

As mentioned in section 2.2, nonminimum-phase zeros and delays are key challenges for system inversion. Let \(H(z) = \frac{B_u(z)}{A(z)} \),

\[
H(z) = \frac{B_u(z)}{A(z)},
\]

with \(B_u(z) \) containing all minimum-phase zeros and \(B_u(z) \) the \(p \) nonminimum-phase zeros. A key issue is that \((B_u(z))^{-1} \) is unstable. Several techniques have been proposed to approximate the inverse of \(B_u(z) \), including NPZ-Ignore [8], zero-phase-error tracking control (ZPETC) [7], and zero-magnitude-error tracking control (ZMETC). The techniques in Table 2 are based on an approximate infinite horizon design and have finite preview.

4.1.2. Application to benchmark system

To demonstrate the characteristics of these approaches, the approaches are applied to the benchmark system of section 3 for \(H = G \). The Bode diagram of \(HF \) for each technique is shown in Fig. 5. Recalling that ideally \(HF = 1 \), it can be observed that ZPETC indeed has zero phase error, ZMETC has zero magnitude error, and NPZ-Ignore has both a magnitude and phase error.

4.2. Stable inversion

In this section, the stable inversion approach for LTI systems is presented. For stable inversion on LTV systems see, for example, [19].

4.2.1. Approach

The techniques presented in the previous section are all based on approximations of the unstable part of the inverse system. In contrast, stable inversion regards the unstable part as a non-causal operation and generates signal \(u \) based on infinite preview. Consider LTI system \(H \) of Remark 1 in state-space form with state \(x \). The state of the inverse \(H^{-1} \) is divided into a stable and unstable part by applying the state transformation \(x[k] = T \begin{bmatrix} x_s[k] \\ x_u[k] \end{bmatrix} \), where \(T \) contains eigenvectors of \(H^{-1} \) such that

\[
\begin{align*}
\begin{bmatrix} x_s[k+1] \\ x_u[k+1] \end{bmatrix} &= \begin{bmatrix} A_s & 0 \\ 0 & A_u \end{bmatrix} \begin{bmatrix} x_s[k] \\ x_u[k] \end{bmatrix} + \begin{bmatrix} B_s[k] \\ B_u[k] \end{bmatrix} r[k], \\
u[k] &= \begin{bmatrix} C_s[k] & C_u[k] \end{bmatrix} \begin{bmatrix} x_s[k] \\ x_u[k] \end{bmatrix} + D[k]r[k],
\end{align*}
\]

with \(|\lambda(A_s)| < 1 \) and \(|\lambda(A_u)| > 1 \), i.e., all stable poles are contained in \(A_s \) and all unstable poles in \(A_u \). The states are found through solving

\[
x_s[k+1] = A_s x_s[k] + B_s r[k], \quad x_s[-\infty] = 0
\]

forward in time and

\[
x_u[k+1] = A_u x_u[k] + B_u r[k], \quad x_u[\infty] = 0
\]

backward in time. The command signal \(u \) follows from

\[
u[k] = C_s x_s[k] + C_u x_u[k] + D r[k].
\]
Stable inversion is an infinite time design that is exact on an infinite time horizon and has infinite preview. A finite time horizon introduces boundary errors.

4.3. Norm-optimal feedforward/ILC

In this section, norm-optimal inversion techniques based on norm-optimal ILC techniques are considered.

4.3.1. Approach

Within ILC there are two main classes [3]. The first class is frequency domain ILC in which a learning filter \(L \approx (SG)^{-1} \) is constructed. The filter is typically implemented using ZPETC or ZMETC, see section 4.1. The second class is norm-optimal ILC in which the two-norms of \(e_{j+1} \) and \(f_{j+1} \) are minimized. Here, subscript \(j \) denotes the current trial and \(j+1 \) the next trial. Common solution methods are adjoint ILC and lifted ILC. The reader is referred to [26, 27] for adjoint ILC, including the effect of nonminimum-phase zeros. In this paper the focus is on lifted ILC. In lifted ILC the solution is based on describing input-output relations in lifted/supervisor notation [28].

For example, the relation between \(y \) and \(u \) is described by

\[
\begin{bmatrix}
y[0] \\
y[1] \\
\vdots \\
y[N-1]
\end{bmatrix}
= \begin{bmatrix}
h[0] \\
h[1] \\
\vdots \\
h[N-1]
\end{bmatrix}
\begin{bmatrix}
f_{0} \\
f_{1} \\
\vdots \\
f_{N-1}
\end{bmatrix}
= w_{N}
\begin{bmatrix}
\Delta u[0] \\
\Delta u[1] \\
\vdots \\
\Delta u[N-1]
\end{bmatrix}
\begin{bmatrix}
\Delta f_{0} \\
\Delta f_{1} \\
\vdots \\
\Delta f_{N-1}
\end{bmatrix}
\begin{bmatrix}
w_{1} \\
w_{2} \\
\vdots \\
w_{N}
\end{bmatrix}
\]

where \(h \) is the impulse response of \(H \) given by

\[
h[k] = \begin{cases} D, & k = 0, \\ CAk^{-1}B, & k = 1, 2, \ldots, N, \end{cases}
\]

with \(N \) the task length. A general performance criterion is

\[
\|e_{j+1}\|_{W_{e}}^2 + \|f_{j+1}\|_{W_{f}}^2 + \|f_{j+1} - f_{j}\|_{W_{\Delta f}}^2,
\]

where \(\|\cdot\|_{W} = (\cdot)^TW(\cdot) \), with \(W_{e} = w_{e}\mathcal{I}_{N}, \ W_{f} = w_{f}\mathcal{I}_{N}, \ W_{\Delta f} = w_{\Delta f}\mathcal{I}_{N}. \) The solution that minimizes this criterion is, see for example [19, Theorem 2],

\[
\mathcal{I}_{j+1} = (H_{e}H +w_{f}\mathcal{I} + w_{\Delta f}\mathcal{I})^{-1}(H_{e}w_{e}H + w_{\Delta f}L_{e})
\]

\[
\mathcal{I}_{j} = (H_{e}H +w_{f}\mathcal{I} + w_{\Delta f}\mathcal{I})^{-1}H_{e}w_{e}.
\]

The use of \(N \times N \) matrix calculations results in extensive computation times growing as \(\mathcal{O}(N^3) \) [19]. An alternative is to use Riccati equations to find the optimal solution as is done in [19]. The approach yields exactly the same optimal solution, but the computation time is limited to \(\mathcal{O}(N) \). Next, the resource-efficient approach based on Riccati equations is used for both ILC and feedforward design.
First, the approach for ILC is presented. Criterion (4) is equivalent to
\[
\sum_{k=1}^{N-1} (e_{j+1}[k] + (f_{j+1}[k])^T w_f (f_{j+1}[k]) - (f_{j}[k])^T w_f (f_{j}[k]))
\]
\[
+ (f_{j}[k] - f_{j}[k])^T w_{\Delta f} (f_{j+1}[k] - f_{j}[k]).
\]

The optimal command signal \(f_{j+1} \) that minimizes (5) is the output of the state-space system
\[
\begin{bmatrix}
A - BL[k] & -BL_f[k] & BL_e[k] & BL_g[k] \\
-L[k] & I - L_f[k] & -L_e[k] & -L_g[k]
\end{bmatrix}
\]
with zero initial state for input
\[
\begin{bmatrix}
f_{j}[k] \\
e_{j}[k] \\
g_{j+1}[k+1]
\end{bmatrix},
\]
where
\[
L[k] = (\gamma^{-1}[k] + B^T P[k+1] B)^{-1}
\]
\[
× (D^T w_e C + B^T P[k+1] A),
\]
\[
L_f[k] = (\gamma^{-1}[k] + B^T P[k+1] B)^{-1} w_f,
\]
\[
L_e[k] = (\gamma^{-1}[k] + B^T P[k+1] B)^{-1} D^T w_e,
\]
\[
L_g[k] = (\gamma^{-1}[k] + B^T P[k+1] B)^{-1} B^T,
\]
\[
\gamma = (D^T w_e D + w_f + w_{\Delta f})^{-1},
\]
with
\[
g_{j+1}[k] = (A^T - K_g[k] B^T) g_{j+1}[k+1] + C^T w_e e_{j}[k] + K_g[k] w_f f_{j}[k],
\]
\[
g_{j+1}[N] = 0_{n_x \times 1},
\]
and \(P[k] \) the solution of the matrix difference Riccati equation
\[
P[k] = (A - B \gamma D^T w_e C)^T P[k+1]
\]
\[
× (I_{n_x} - B (\gamma^{-1}[k] + B^T P[k+1] B)^{-1} B^T) P[k+1])
\]
\[
× (A - B \gamma D^T w_e C)
\]
\[
+ C^T w_e C - (D^T w_e C) \gamma (D^T w_e C),
\]
\[
P[N] = 0_{n_x \times n_x}.
\]

It can be shown that \(|e_j - e_{\infty}|_2 \) converges monotonically if \(w_e > 0, w_f, w_{\Delta f} \geq 0 \). If \(H \) is strictly proper (i.e., \(D = 0 \)), then \(w_f > 0 \) or \(w_{\Delta f} > 0 \) is required to guarantee monotonic convergence. This inherently reduces the performance in terms of \(|e|_2\) since input \(f_j \) is penalized. To avoid this, \(H \) can be made bi-proper by applying time-shifts (see Remark 1) such that \(D \neq 0 \) and hence \(w_f = w_{\Delta f} = 0 \) can be used.

Next, the approach for inverse model feedforward is presented. Feedforward can be seen as a special case of ILC in which there is only one trial and hence no input change weight \(w_{\Delta f} \). In particular, if \(H \) is bi-proper and \(w_f, w_{\Delta f} = 0 \), the solution reduces to inverse model ILC. Without input change weight \(w_{\Delta f} = 0 \), and \(w_e = Q \), \(w_f = R \), (5) reduces to the LQ criterion
\[
\sum_{k=1}^{N-1} (e[k])^T Q(e[k]) + (u[k])^T R(u[k])
\]

For the case without direct feedthrough \((D = 0) \), the problem reduces to the well-known LQ tracking problem [15], with solution
\[
x[k+1] = (A - BL[k]) x[k] + BL_g[k] g[k+1],
\]
x[0] = 0,
\[
u[k] = -L[k] x[k] + L_g[k] g[k+1],
\]
where
\[
L[k] = (R + B^T P[k+1] B)^{-1} B^T P[k+1] A,
\]
\[
L_g[k] = (R + B^T P[k+1] B)^{-1} B^T,
\]
with
\[
g[k] = C^T Q r[k] + A^T ((P^{-1}[k+1] + BR^{-1} B^T)^{-1} BR^{-1} B^T) g[k+1],
\]
g[N] = 0,
and \(P[k] \) the solution of the matrix difference Riccati equation
\[
P[k] = C^T Q C + A^T P[k+1] A
\]
\[
- A^T P[k+1] B (R + B^T P[k+1] B)^{-1} B^T P[k+1] A,
\]
P[N] = 0.

4.3.2. Application to benchmark system
The norm-optimal feedforward approach is applied to the benchmark system \(H = G \) under the same conditions as in section 4.2, i.e., with reduced pre-actuation and post-actuation. The results are shown in Fig. 6. The approach outperforms stable inversion since it takes the boundary effects into account using the linear time varying (LTV) character of the solution. This behavior can be observed at the start of \(u \) in Fig. 6(a).

4.3.3. Summary
Norm-optimal ILC/feedback is a finite time design and has infinite preview (equal to the task length). The approach is optimal in terms of minimizing \(|e|_2\) if \(w_f = 0 \) in ILC or if \(R = 0 \) in feedforward.

4.4. Preview control
In preview control the inverse system is optimized for a specific infinite time objective, with pre-defined preview.
For \mathcal{H}_∞-preview control in a feedforward setting, the results for a range of preview values q are shown in Fig. 8(a). More preview q introduces more design freedom and hence $\|W(1-HF)\|_\infty$ decreases.

For \mathcal{H}_2-preview control in a feedforward setting with input weighting

$$W_r(z) = \left(\frac{2.0236(z + 0.03295)}{z - 0.9570} \right)^4,$$

the resulting filters HF for a range of preview values q are shown in Fig. 8(b). For larger q, $|HF|$ is closer to unity.

5. A control goal perspective

A qualitative overview of the inversion techniques of the previous section is provided in Table 3. Extensions to multivariable and time varying systems are presented in section 7. In this section, the control goal is added to the inversion techniques of section 4 and the results are validated on the benchmark system of section 3.
5.2. Application to ILC

5.2.1. Guaranteed convergence

In an ILC setting, there is guaranteed convergence in error norm $\|e_j\|_2$ over the trials if $\|W(1-HF)\|_\infty = \|1-GSF\|_\infty < 1$, see also section 2.3. It might be possible that the condition cannot be satisfied at all, but if the condition can be satisfied, \mathcal{H}_∞ preview control guarantees convergence since it minimizes $\|W(1-HF)\|_\infty$, see section 4.4. Fig. 11(a) shows the Bode magnitude $|W(1-HF)|$ for techniques with explicit design of F. Note that since the benchmark system is singlevariable, $\|W(1-HF)\|_\infty = \max_{\omega} |W(e^{j\omega}) (1-H(e^{j\omega}) F(e^{j\omega}))|$. The figure reveals that both \mathcal{H}_∞ preview control and H_2 preview control are guaranteed to converge. The approximate inverse techniques require a robustness filter $W \neq 1$ to guarantee convergence, which goes at the expense of performance, i.e., $W(1-HF)$ for some possibly noncausal W.

On an infinite time horizon, stable inversion is also guaranteed to converge since it is exact. However, on a finite time interval truncation errors might deteriorate conver-
convergence. Finally, convergence can be guaranteed for norm-optimal ILC by proper weight selection, see section 4.3.

In summary, convergence in $\|e_j\|_2$ can be guaranteed for H_∞ preview control, H_2 preview control, norm-optimal ILC, and stable inversion (on an infinite horizon). For NPZ-Ignore, ZPETC and ZMETC an additional robustness filter $W \neq I$ is required to enforce convergence, at the cost of performance.

5.2.2. Application to the benchmark system

The convergence on the benchmark system of section 3 is investigated. Fig. 11(b) shows $\|e_j\|_2$ over 11 trials. The results show that there is indeed convergence for H_∞ preview control, H_2 preview control, and norm-optimal ILC, and also for stable inversion despite the boundary errors. For the approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC an additional robust filter W is used to guarantee convergence. The robustness filter is designed as $W = Q^*Q$ with Q^* the adjoint of Q to avoid phase distortion. A first-order low-pass filter is used for Q to reduce the high frequent magnitude, see also Fig. 11(a).

Since the approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC require an additional robustness filter $W \neq I$, the limit error is nonzero, i.e., $\varepsilon_\infty \neq 0$. The consequence is a poor performance as shown by Fig. 11(b) confirming statements in earlier sections.

Since there are no trial-varying disturbances, the theoretical limit error equals $\varepsilon_\infty = 0$ for all methods without robustness filter, i.e., all except the approximate inverse techniques. However, due to numerical aspects, this value it not achieved exactly. Norm-optimal ILC converges in a single trial to ε_∞ since $w_f = w_\Delta_f = 0$. In contrast, H_∞ preview control, H_2 preview control and stable inversion are not exact and therefore require multiple trials to converge. The number of preview samples q in H_∞ preview control ($q = 100$ in Fig. 11) directly influences the convergence speed. Ideally, the H_2 preview control filter F is updated every trial based on the spectrum of e_j. Fig. 11 shows the results for fixed F based on the spectrum of $e_0 = Sr$ with $q = 100$.

6. Non-square systems

In the preceding sections, several inversion techniques are developed that include preview. Essentially, there are
two reasons for preview: strict delays, which is quite obvious, and nonminimum-phase zeros. An interesting observation is that such nonminimum-phase zeros are essentially the values z where

$$
\begin{bmatrix}
zI - A & -B \\
C & D
\end{bmatrix}
$$

(8)

loses rank. As a result, in general a non-square system will have no zeros and hence also no nonminimum-phase zeros. However, direct inversion using (1) is not possible since D is not invertible. Depending on the excess of inputs or outputs, infinitely many or no exact solution exists. In this section, an approach is developed that allows for causal inversion of general nonminimum-phase systems.

6.1. A squaring-down approach

For systems with more inputs than outputs, system F in Fig. 1(c) is composed as $F = T_u \tilde{F}$. First, transformation T_u is constructed such that HT_u is square. The transformation T_u is generally dynamic but can also be static, i.e., independent of frequency. Techniques for squaring down can be found in, for example, [30, 31, 32]. Second, \tilde{F} is obtained through inversion of HT_u using (1). In certain cases, a T_u exists such that the squared-down system is minimum phase. Such a transformation enables exact inversion and avoids the use of preview.

Systems with more outputs than inputs are the dual of systems with more inputs than outputs.

6.2. Application to benchmark system

The procedure is applied to the two-input, single-output system of Fig. 12(a). The system is an extended version of the benchmark system in Fig. 2, with the addition of input u_2 located 0.1 ft from input u_1. The system H from $[u_1 \quad u_2]^T \to y$ is given by

$$
\begin{bmatrix}
A & B_1 & B_2 \\
C & D_1 & D_2
\end{bmatrix}
$$

where

$$
\begin{bmatrix}
1.0000 & 0.0010 & 0 & 0 & 0.0000 & 0.0000 \\
0 & 1.0000 & 0 & 0 & 0.0001 & 0.0001 \\
0 & 0 & 0.9981 & 0.0010 & 0.0000 & 0.0000 \\
0 & 0 & -3.6783 & 0.9614 & 0.0037 & 0.0029 \\
1.0000 & 0 & -0.0500 & 0 & 0 & 0
\end{bmatrix}
$$

By (8) it follows that the transfer $u_1 \to y$, i.e., (A, B_1, C, D_1) has a nonminimum-phase zero at $z = 1.140$ (see also section 3) and that the transfer $u_2 \to y$, i.e., (A, B_2, C, D_2), has a nonminimum-phase zero at $z = 1.2965$. Since both transfers have a single nonminimum-phase zero, the step responses of both initially move in opposite direction [24], see Fig. 12(c). Because the nonminimum-phase zeros are different, non-square H is minimum phase.

The static transformation

$$
T_u = \begin{bmatrix} -1 \\ 1.1 \end{bmatrix}
$$

(9)

yields the single-input, single-output system HT_u as

$$(A, [B_1 \quad B_2] T_u, C, [D_1 \quad D_2] T_u),$$

where

$$
[B_1 \quad B_2] T_u = 10^{-3} \times \begin{bmatrix} 0.0000 \\ 0.0125 \\ -0.0002 \\ -0.4414 \end{bmatrix}
$$

Through (8) it can be shown that HT_u has no nonminimum-phase zeros, which is confirmed by the step response in Fig. 12(c).

Direct inversion (1) on square, minimum-phase HT_u yields \tilde{F}. The inputs u_1, u_2 are shown in Fig. 13. Note that since HT_u is strictly proper with relative degree $d = 1$, one sample preview is required, see also Remark 1.

6.3. Summary

The results confirm that additional actuators and sensors are very promising, also in the field of inversion and learning control, especially when nonminimum-phase zeros are encountered. This strongly relates to recent research on overactuation and oversensing, see [33] in this respect.

Here, a two-step approach is outlined. First, the system is down-squared using static or dynamic transformations. Second, exact inversion is used, avoiding the need for preview.
The results also impact, e.g., the preview control approaches in section 4.4, where it will lead to much less required preview. Hence, one can also use these optimization based approaches. The present experience reveals that these have much better results with more inputs and/or outputs, since a much larger design freedom can be exploited.

7. Extensions: multivariable, time varying, parameter-varying, and nonlinear

The applicability of each technique to multivariable and time varying systems is summarized in Table 3. For NPZ-Ignore, ZPETC, and ZMETC the extension to multivariable systems is nontrivial. In [20], an approach for multivariable ZPETC is proposed which applies multiple times SISO ZPETC to the Smith form of the system. Similarly, the Smith form can be used to construct NPZ-Ignore and ZMETC. However, in [20] it is concluded that at present there are no numerically stable algorithms for finding Smith forms. Therefore, these techniques currently seem to be limited to SISO systems.

Techniques based on state-space descriptions, such as stable inversion and norm-optimal feedforward/ILC, can directly be extended to multivariable systems. Note, however, that stable inversion is only applicable to square systems since it requires the inverse system (1). Also H_∞ and H_2 preview control can directly be extended, but the exact implementation depends on the specific requirements. For example, in ILC convergence over trials of the error e_j is determined by $(I - (GS)F)$ whereas convergence of input u is determined by $(I - F(GS))$, and generally $F(GS) \neq (GS)F$ for multivariable systems. For underactuated systems, i.e., with more outputs than inputs, exact tracking is impossible. For overactuated systems, i.e., with more inputs than outputs, exact tracking is possible and the additional degrees of freedom can be exploited to satisfy additional requirements, see for example the approach in section 6.

Application to time varying systems is restricted to the finite time design techniques stable inversion and norm-optimal feedforward/ILC since others are based on time invariant frequency domain techniques. However, the dichotomy in stable inversion is nontrivial for general time varying systems. For linear periodically time varying (LPTV) systems this is solved in [25].

For stable inversion for nonlinear systems, the reader is referred to [34, 35]. For linear parameter-varying systems, the reader is referred to [36].

8. Conclusion and outlook

Inversion techniques are essential for achieving high performance in motion systems, either through inverse model feedforward or learning control. In this paper, the criteria for inverse model feedforward and ILC are posed and several inversion techniques are investigated, developed, and compared on a nonminimum-phase benchmark system, resulting in the following guidelines.

For inverse model feedforward, norm-optimal feedforward (section 4.3) has important advantages as it explicitly takes into account boundary effects. If boundary effects are not critical, H_2 preview control (section 4.4) is recommended as infinite time design.

For ILC, filter synthesis via H_∞ preview control (section 4.4) is strongly recommended, since the optimization criterion is taken equal to the convergence condition of ILC. For non-optimal filter design, stable inversion (section 4.2) is experienced to yield better results than the approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC (section 4.1). Importantly, the approximate inverse techniques typically require an additional robustness filter at the cost of performance.

For applicability of the techniques to multivariable and time varying systems the following conclusions are drawn. The approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC are currently limited to SISO systems. Stable inversion, norm-optimal feedforward/ILC, H_∞ preview control, and H_2 preview control can directly be applied to multivariable systems, though stable inversion is limited to square systems. Only stable inversion and norm-optimal feedforward/ILC are applicable to time varying systems.

Ongoing research focuses on different system classes such as linear time-varying (LTV), linear periodically time-varying (LPTV), linear parameter varying (LPV), position-dependent, and data-driven methods [37, 21, 38, 39]. Results will be reported elsewhere.

Acknowledgments

The authors would like to acknowledge Sander Verhoeven, Janno Lunenburg, Lennart Blanken, and Robin de Rozario for their early contributions to the presented research.

References

[1] F. Boeren, A. Bareja, T. Kok, T. Oomen, Frequency-Domain ILC Approach for Repeating and Varying Tasks: With Ap-
Appendix A. Background approximate inverse techniques

In this appendix the approximate inverse techniques NPZ-Ignore, ZPETC, and ZMETC are derived for the decomposition in (2). The results are summarized in Table 2.
NPZ-Ignored ignores the nonminimum-phase dynamics by using
\[F(z) = \frac{A(z)}{\beta B_s(z)} \]
resulting in
\[H(z)F(z) = \frac{B_u(z)}{\beta}. \]

Parameter \(\beta \) is a tuning parameter and typically used to compensate for the DC gain by setting
\[\beta = B_u(1). \]
Note that (A.1) has \(p+d \) samples preview. Recalling that ideally \(H(z)F(z) = 1 \), it follows that for \(p > 0 \) there is an error in both magnitude and phase.

Zero-phase-error tracking control (ZPETC) perfectly compensates for the phase using
\[F(z) = \frac{A(z)B_u(z^{-1})}{\beta^2 B_s(z)} = \frac{z^{-p}A(z)B_u^*(z)}{\beta^2 B_u(z)}, \]
with
\[B_u^*(z) = z^p B_u(z^{-1}). \]

For this choice it follows that
\[H(z)F(z) = \frac{B_u(z)B_u(z^{-1})}{\beta^2} = \frac{z^{-p}B_u(z)B_u^*(z)}{\beta^2} \]
has zero phase as desired. Note that with \(\beta \) in (A.2) the DC gain is compensated and that (A.3) has \(p+d \) samples preview.

Zero-magnitude-error tracking control (ZMETC) perfectly compensates the magnitude by using
\[F(z) = \frac{A(z)}{z^p B_s(z)B_u(z^{-1})} = \frac{A(z)}{B_u(z)B_u^*(z)}, \]
resulting in
\[H(z)F(z) = \frac{B_u(z)}{z^p B_u(z^{-1})} = \frac{B_u(z)}{B_u^*(z)} \]
Note that (A.5) indeed has zero magnitude error (i.e., unity magnitude) and that (A.4) has \(d \) preview samples.