Adaptive control for mechanical ventilation for improved pressure support

Joey Reinders, Bram Hunnekens, Frank Heck, Tom Oomen, Senior Member, IEEE, Nathan van de Wouw, Senior Member, IEEE

Abstract—Respiratory modules are medical devices used to assist patients to breathe. The aim of this paper is to develop a control method that achieves exact tracking of a time-varying target pressure, for unknown patient-hose-leak parameters and in presence of patient breathing effort. This is achieved by an online estimation of the hose characteristics that enables compensation for the pressure drop over the hose. Stability of the closed-loop system is proved and the performance improvement compared to existing control strategies is demonstrated by simulation and experimental case studies.

Index Terms—Adaptive control, tracking performance, respiratory systems, mechanical ventilation, medical applications

I. INTRODUCTION

MECHANICAL ventilation is commonly used in Intensive Care Units (ICUs) to assist patients who need support to breathe sufficiently. The main goals of mechanical ventilation are to ensure oxygenation and carbon dioxide elimination [1]. A large number of patients requires mechanical ventilation. According to [2], 19,186 people required mechanical ventilation in Ontario, Canada, in 2000. Therefore, improvements of ventilation benefit a large population worldwide.

The goal of mechanical ventilation is achieved using a mechatronic system, the mechanical ventilator. A schematic overview of a mechanical ventilator, with a single-hose setup and a patient, is depicted in Fig. 1. In this paper, blower-driven Pressure Controlled Ventilation (PCV) of sedated patients and Continuous Positive Airway Pressure (CPAP) ventilation of spontaneously breathing patients is considered.

In PCV, the blower compresses ambient air to achieve the desired pressure profile, see Fig. 2, near the patient’s mouth. The blower is increasing the airway pressure during inspiration, to achieve the Inspiratory Positive Airway Pressure (IPAP), filling the patient’s lungs with air. After a preset

Fig. 1: Schematic representation of the blower-hose-patient system of the considered positive pressure ventilation system.

amount of time has passed, the blower decreases the pressure to the Positive End-Expiratory Pressure (PEEP), such that the lungs are emptied.

In CPAP, the goal is to achieve a continuous airway pressure, while the patient breaths through this profile. A substantial amount of research has been conducted to obtain the optimal ventilator settings and modes, e.g., [3], [4], and [5], which focuses on the design of the pressure set-point.

Accurate tracking of the target pressure is important to achieve sufficient support for the patient, especially in cases of large flows, as a result of large lungs and/or unintentional leaks, e.g., in non-invasive ventilation. Furthermore, accurate pressure tracking results in better patient-ventilator synchrony; in [6] and [7], it is argued that better tracking prevents false triggers, improving patient-ventilator synchrony. Asynchrony between patient and machine is even associated with high mortality [8]. Finally, for more complex ventilation modes, allowing for patient effort, exact tracking is essential to deliver the required level of assistance more accurately.

Fig. 2: Airway pressure and patient flow during one breathing cycle of pressure controlled ventilation (p_{aw}: airway pressure, Q_{pat}: flow into the patient’s lungs, see also Fig. 5).
Traditionally, these ventilators are controlled using linear time-invariant feedback controllers. This results in sub-optimal tracking performance in terms of overshoot and settling time, as shown in Fig. 2. The main cause for such sub-optimal performance is the large variation of plants for which the linear feedback controller should be robust. Indeed, the controller should ensure robust performance for a broad spectrum of patients, from infants to adults, varying disposable hose-filter systems, unknown leakage, and possibly unknown patient activity.

Different control strategies have been investigated to improve the mechanical ventilators. In [9], an overview of modelling and control techniques for mechanical ventilation is presented. Variable-gain control is proposed in [6] and [7], which aims to achieve pressure tracking while reducing the overshoot in patient flow, preventing false triggering. This work shows a clear reduction in patient flow overshoot. However, still some overshoot is present and the patient flow is used in the control strategy, which is typically not available. In [10], an adaptive feedback control approach is applied which is estimating the patient model and using this to adaptively tune a controller which achieves a desired closed-loop transfer function. In theory this works well, however, in practice it is complex to obtain an accurate patient model. Furthermore, in [10] the hose resistance is neglected, while for large air flows, induced by large lungs and/or leakage, the hose-induced pressure drop cannot be neglected. Also funnel-based control [11] is applied to mechanical ventilation, however, the obtained gain in tracking performance is limited. In [12], a model-based control approach is used and in [13] a model predictive control approach is applied. These methods require accurate patient parameters which are typically not available in practice. Furthermore, iterative learning control [14] is applied to mechanical ventilation. This work shows a significant improvement in tracking performance. A drawback of this approach is that it is limited to repeated sequences of the set-point and initial conditions. Therefore, performance of the iterative learning control framework proposed by [14] degrades when patients are breathing spontaneously.

Although previous research shows promising improvements in tracking performance, it does not achieve sufficiently accurate tracking of the target pressure, for the required range of patients, patient effort, hose-filter systems, and set-points. To achieve this, this paper presents an adaptive control strategy that compensates for the pressure drop over the hose. A hose resistance estimate and the measured output flow are used to compensate for the pressure drop over the hose. Manual calibration of the hose-filter system to obtain the hose resistance is an undesired option, because of the already increasing demand of health care and the lack of trained personnel, see [2] and [15]. Further, the hose resistance might change during ventilation, due to clogging of the filter. Therefore, an online Recursive Least Squares (RLS) estimator is developed to estimate the hose resistance automatically during ventilation.

In this work, an adaptive control scheme is considered instead of a robust scheme. First, the wide variety in patients and hose types leads to a situation where it is challenging to achieve adequate performance for every patient using one single robustly-tuned linear feedback controller. Second, manual calibrations are undesired because of the lack of time in a hospital setting; such calibration can be omitted by using an adaptive controller. Third, since the system parameters may vary over time, it is beneficial that an adaptive scheme allows to respond to such variations, thereby guaranteeing high performance under such changing circumstances.

The main difference with the adaptive control strategy in [10] is that in the proposed control strategy only the hose-resistance model is estimated and used in the feedback loop. The patient parameters are not estimated, which is typically challenging because of the wide variety of patients and the model uncertainty concerning the structure of the patient model. Therewith, the method proposed in this work is invariant to the patient model, which is a significant advantage over the adaptive control scheme in [10].

The main contribution of this paper is the design of a control strategy for mechanical ventilation which ensures exact tracking of the airway pressure independent of the patient, hose, leakage, patient effort, and set-point. Key advantages of the proposed approach include that it

- allows for a fast and accurate pressure response, even for large lungs and big leaks;
- prevents overshoot in the patient flow and therewith prevents false triggering; and
- is not using direct feedback on the patient airway pressure, improving robustness, since the patient airway sensor tube might detach;

The first subcontribution is a stability proof of the resulting closed-loop system, ensuring exponential convergence of the estimation and tracking errors to zero. As a second subcontribution, a significant improvement in tracking performance in comparison to state-of-practice control strategies is shown through a simulation case study. The third subcontribution, is an experimental case study that shows the practical applicability of the controller and improvement over the state-of-practice control strategies.

The outline of this paper is as follows. In Section II, the control problem and high-level control approach are described. In section III, a mathematical model of the patient-hose system is presented. In Section IV, the developed control strategy is described and a stability analysis is presented. A model-based simulation study is presented in Section V, comparing state-of-practice control strategies to the developed adaptive controller. In Section VI, the adaptive controller is compared to state-of-practice control strategies in an experimental case study. Finally, the conclusions and recommendations are presented in Section VII.

II. CONTROL PROBLEM FORMULATION

In this section, the considered system is first presented. Thereafter, the control problem is formulated and the state-of-practice control approach is discussed in this context. Furthermore, a high-level description of the proposed control approach is given.

A schematic overview of the system, with the most important system components, is depicted in Fig. 1. The system
is operated by the blower, which pressurizes ambient air in order to ventilate the patient. A hose is used to connect the respiratory module to the patient. The flow, which leaves the blower, runs through the hose towards the patient. The patient exhales partly back through the blower, and partly through a leak in the hose near the patient’s mouth, see Fig. 1. This leak is used to refresh the air in the hose, to ensure that the patient does not inhale previously exhaled, low-oxygen, air.

A. Control problem and state-of-practice approach

In blower-driven respiratory systems, typically linear integral feedback controllers are used. Implementing a linear feedback controller results in a closed-loop system, as depicted in Fig. 3. In this closed-loop system the airway pressure \(p_{aw} \) is the variable to be controlled, i.e., it should track the target pressure \(p_{target} \). The overall control goal is to minimize the tracking error, defined as

\[
e := p_{target} - p_{aw},
\]

or ideally let it converge to zero asymptotically.

To achieve a blower output pressure \(p_{out} = p_{control} \), an accurate lookup table is used in addition to a feedback controller using feedback of the blower error \((p_{control} - p_{out}) \). This lookup table is used to determine the desired blower RPM to achieve the desired outlet pressure \(p_{out} \), given the measured outlet flow \(Q_{out} \). The feedback controller is used to eliminate the remaining blower error. Combined, the lookup table and the feedback controller accurately achieve \(p_{out} = p_{control} \) in the frequency domain of interest. Consequently, the unit feedforward in combination with the blower characteristic ensures that \(p_{out} \) is exactly tracking \(p_{target} \).

Since unit feedforward achieves \(p_{out} = p_{target} \), the feedback controller in Fig. 3 has to compensate for the pressure drop \(\Delta p = p_{out} - p_{aw} \) along the hose. Note that it is challenging to predict the pressure drop along the hose due to several factors:

- the type of lung attached, i.e., the patient, is in principle unknown. Although the pressure target is a priori known, the amount of flow entering a lung depends on the lung resistance and lung compliance and is therefore unknown. Therewith, also the flow through the hose, and thus the pressure drop \(\Delta p \) are unknown;
- the characteristic of the hose system attached is also unknown. Hence, the pressure drop along the hose is unknown;
- during (non-invasive) ventilation there can be leakage around the mask, which cannot be predicted and therefore results in an a priori unknown pressure drop;
- additionally, patients can have spontaneous breathing activity (resulting in a flow and therewith a pressure drop along the hose), which also cannot be predicted a priori.

Therefore, exact feedforward control cannot be used to compensate for the pressure drop \(\Delta p \) over the hose.

Alternatively, a linear feedback controller, typically a Proportional-Integral (PI) controller, is used to compensate for the pressure drop over the hose. A linear feedback controller has to be tuned for robustness over large plant variations. Therefore, it is unable to achieve accurate tracking for all considered patients. Furthermore, a feedback controller uses the measured airway pressure \(p_{aw} \) in the feedback loop. Feedback on \(p_{aw} \) is undesired, since the sensor tube might get detached in practice.

B. Proposed control strategy

Here, a control strategy is proposed that uses an estimated hose resistance model and the output flow \(Q_{out} \), which is measured near the blower, to compensate for the pressure drop \(\Delta p \) over the hose, see Fig. 4. Because the hose resistance is unknown, an offline calibration could be conducted by hospital personnel to estimate the hose resistance prior to ventilation. This calibration requires extra time of the hospital staff, which is undesired because of the already existing lack of time for hospital staff, as mentioned in Section I. Furthermore, the resistance may change over time.

Therefore, an adaptive control approach is developed, which is using an online Recursive Least Squares (RLS) estimator to estimate the hose resistance automatically during ventilation, see Fig. 4. Practically, this approach is considerably more reliable than the state-of-practice feedback method, which is using \(p_{aw} \) directly in the feedback loop. The proposed strategy is only using \(p_{aw} \) for updating the estimator. In practice, the sensor tube used to measure \(p_{aw} \) might get detached. In such a scenario, the proposed controller can keep running without updating the resistance, whereas the feedback controller fails and may cause a potentially dangerous situation.

Another advantage of this control strategy is that it compensates for the pressure drop \(\Delta p \) over the hose using the measured blower outlet flow \(Q_{out} \). The pressure drop over the hose \(\Delta p \) depends on the flow through the hose, which is equal to the blower outlet flow \(Q_{out} \). Therefore, exact compensation of this pressure drop based on the measured flow allows for perfect tracking independent of the leak, patient dynamics, and patient effort. In the following section, a model of the patient-hose dynamics is presented.

![Fig. 4: Schematic representation of the proposed closed-loop system with a recursive least squares estimator for the hose resistance estimation.](image)
III. PATIENT-HOSE DYNAMICS

In this section, a description of the system parameters used in the model is given. Thereafter, the open-loop patient-hose dynamics are presented.

A. Patient-hose parameters

Before presenting the mathematical model, the system parameters and their physical meaning are discussed. Consider the schematic representation of the blower, hose, and patient depicted in Fig. 5. First, the blower compresses ambient air to the desired blower outlet pressure \(p_{\text{out}} \). Note that all pressures are defined relative to the ambient pressure, i.e., \(p_{\text{amb}} = 0 \). This outlet pressure results in a flow \(Q_{\text{out}} \) through the hose, with resistance \(R_{\text{lin}} \). Furthermore, the patient airway pressure \(p_{\text{aw}} \) is measured just in front of the patient’s mouth, using the sensor tube. A leak is used to flush exhaled \(\text{CO}_2 \)-rich air from the hose system and is modeled using the leak resistance \(R_{\text{leak}} \). The lung is modeled using a linear one-compartmental lung model as described in [16], with lung compliance \(C_{\text{lung}} \) and resistance \(R_{\text{lung}} \). Note that all physical patient-hose parameters, i.e., \(R_{\text{lin}}, R_{\text{leak}}, R_{\text{lung}}, \text{ and } C_{\text{lung}} \), are strictly positive. Furthermore, Fig. 5 shows the patient’s breathing effort \(\dot{p}_{\text{pat}} \), which is considered an exogenous disturbance on the lung pressure, caused by the patient’s respiratory effort.

B. Patient-hose model

Using the parameters and models outlined above, a mathematical patient-hose model is derived. This model describes the relation between the blower outlet pressure \(p_{\text{out}} \), the disturbance \(\dot{p}_{\text{pat}} \), the state \(p_{\text{lung}} \), and the outputs \(p_{\text{aw}} \) and \(Q_{\text{out}} \).

Using conservation of flow, the output flow \(Q_{\text{out}} \), patient flow \(Q_{\text{pat}} \), and leakage flow \(Q_{\text{leak}} \) are related by

\[
Q_{\text{pat}} = Q_{\text{out}} - Q_{\text{leak}}.
\] (2)

The resistances are modeled using a linear resistance model, which is reasonably accurate for typical flows in ventilation. Using the linear resistances \(R_{\text{lin}}, R_{\text{leak}}, \text{ and } R_{\text{lung}} \), the pressures and flows are related as follows:

\[
Q_{\text{out}} = \frac{p_{\text{out}} - p_{\text{aw}}}{R_{\text{lin}}},
\]

\[
Q_{\text{leak}} = \frac{p_{\text{aw}}}{R_{\text{leak}}},
\]

\[
Q_{\text{pat}} = \frac{p_{\text{aw}} - p_{\text{lung}}}{R_{\text{lung}}}.
\] (3)

The lung dynamics are governed by

\[
p_{\text{lung}}(t) = \frac{1}{C_{\text{lung}}} \int_0^t Q_{\text{pat}} dt + p_{\text{pat}}(t) + p_{\text{lung}}(0)
\] (4)

with \(p_{\text{pat}}(t) \) the (time-varying) patient effort. The patient effort is modeled as an unknown disturbance on the lung pressure, induced by the patient’s respiratory efforts, e.g., diaphragm and/or abdominal muscle contractions. Furthermore, \(p_{\text{lung}}(0) \) represents the initial lung pressure excluding the patient effort. The time derivative of the lung pressure then satisfies

\[
\dot{p}_{\text{lung}}(t) = \frac{1}{C_{\text{lung}}} Q_{\text{pat}} + \dot{p}_{\text{pat}}.
\] (5)

Combining (3) and (5), the lung dynamics are described by

\[
p_{\text{lung}} = \frac{p_{\text{aw}} - p_{\text{lung}}}{C_{\text{lung}} R_{\text{lung}}} + \dot{p}_{\text{pat}}.
\] (6)

The following relation for the airway pressure is obtained from (2) and (3):

\[
p_{\text{aw}} = \frac{R_{\text{lin}} R_{\text{leak}} p_{\text{lung}} + R_{\text{leak}} R_{\text{lung}} p_{\text{out}}}{R} \tag{7}
\]

with \(R := R_{\text{lin}} R_{\text{leak}} + R_{\text{lin}} R_{\text{lung}} + R_{\text{leak}} R_{\text{lung}} \). By substituting (7) into (6), a differential equation for the lung dynamics is obtained

\[
\dot{p}_{\text{lung}} = -\frac{(R_{\text{lin}} + R_{\text{leak}})}{C_{\text{lung}} R} p_{\text{lung}} + \frac{R_{\text{leak}}}{C_{\text{lung}} R} p_{\text{out}} + \dot{p}_{\text{pat}}. \tag{8}
\]

Given (8), (7), and (3), the patient-hose system dynamics can be written as a linear state-space system with input \(p_{\text{out}} \), outputs \(p_{\text{aw}} \) and \(Q_{\text{pat}} \), state \(p_{\text{lung}} \), and disturbance \(\dot{p}_{\text{pat}} \):

\[
\begin{bmatrix}
\dot{p}_{\text{aw}} \\
\dot{Q}_{\text{pat}}
\end{bmatrix} =
\begin{bmatrix}
A_h & B_h \\
C_h & D_h
\end{bmatrix}
\begin{bmatrix}
p_{\text{aw}} \\
Q_{\text{pat}}
\end{bmatrix} +
\begin{bmatrix}
\dot{p}_{\text{pat}}
\end{bmatrix}, \tag{9}
\]

with

\[
A_h = \begin{bmatrix}
-\frac{R_{\text{lin}} R_{\text{leak}}}{C_{\text{lung}} R} & -\frac{R_{\text{leak}} R_{\text{lung}}}{C_{\text{lung}} R}
\end{bmatrix}, \quad
B_h = \frac{R_{\text{leak}}}{C_{\text{lung}} R},
\]

\[
C_h = \begin{bmatrix}
\frac{R_{\text{lin}} R_{\text{leak}}}{R} & -\frac{R_{\text{lin}} R_{\text{leak}}}{R}
\end{bmatrix},
\]

\[
D_h = \begin{bmatrix}
\frac{R_{\text{leak}} R_{\text{lung}}}{R} & \frac{R_{\text{leak}} R_{\text{lung}}}{R}
\end{bmatrix}.
\] (10)

Since all resistances and the compliance are strictly positive constants, \(A_h \) is negative and hence the patient-hose system is inherently asymptotically stable. Note that \(\dot{p}_{\text{pat}} \) is considered to be an exogenous disturbance, whereas in practice it contains dynamics, i.e., the patient’s breathing behavior.

IV. ADAPTIVE CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, the proposed adaptive control approach is presented, leading to the main contribution of this work. In Section IV-A, the closed-loop dynamics resulting from the new control strategy are presented, for the case in which a constant estimate \(\hat{R}_{\text{lin}} \) of the hose resistance \(R_{\text{lin}} \) is used. In Section IV-B, the RLS estimator, used to estimate the hose resistance, is given. Finally, in Section IV-C, a stability analysis of the resulting closed-loop dynamics, including the estimator, is presented.
A. Closed-loop dynamics for a constant hose-resistance estimate

In this section, a state-space description of the closed-loop dynamics with a constant estimate \hat{R}_{lin} are derived. This state-space description is needed to analyze the performance and stability of the controlled system. In the closed-loop dynamics, a feedback controller on the blower outlet flow Q_{out} is included, as depicted in Fig. 4. The constant feedback controller in Fig. 4 and the fact that the blower gain is 1 in the frequency domain of interest results in $p_{out} = p_{\text{control}} = \Delta \hat{p} + p_{\text{target}}$. Using $p_{out} = \Delta \hat{p} + p_{\text{target}}$ and (9) results in

$$\dot{p}_{\text{lung}} = A_h p_{\text{lung}} + B_h (p_{\text{target}} + \Delta \hat{p}) + p_{\text{pat}}. \quad (11)$$

From Fig. 4, we know that the estimated pressure drop is given by $\Delta \hat{p} = \hat{R}_{lin} Q_{out}$. Using (2), (3), and (5) this pressure drop estimate can be rewritten to

$$\Delta \hat{p} = \hat{R}_{lin} (Q_{\text{pat}} + Q_{\text{leak}})$$

$$= \hat{R}_{lin} (C_{\text{lung}} (p_{\text{lung}} - p_{\text{pat}}) + \frac{p_{\text{aw}}}{R_{\text{leak}}}) . \quad (12)$$

Note that $p_{\text{control}} = \Delta \hat{p} + p_{\text{target}}$ together with (12) essentially form the proposed feedback law that aims at compensating the pressure drop over the hose-filter system. Substituting the airway pressure, obtained from (6), into (12) gives

$$\Delta \hat{p} = \hat{R}_{lin} \left(C_{\text{lung}} \left(1 + \frac{R_{\text{lung}}}{R_{\text{leak}}} \right) (p_{\text{lung}} - p_{\text{pat}}) + \frac{p_{\text{aw}}}{R_{\text{leak}}} \right). \quad (13)$$

For notational purposes, the combined variable

$$R(e_{LS}) := e_{LS} (R_{\text{leak}} + R_{\text{lung}}) + R_{\text{leak}} R_{\text{lung}}$$

is defined with the estimation error

$$e_{LS} := R_{\text{lin}} - \hat{R}_{\text{lin}}. \quad (15)$$

Then, substitution of (13) in (11) gives

$$p_{\text{lung}} = -R_{\text{leak}} - e_{LS} C_{\text{lung}} R(e_{LS}) \dot{p}_{\text{lung}} + \frac{R_{\text{leak}}}{C_{\text{lung}} R(e_{LS})} p_{\text{target}} + p_{\text{pat}}. \quad (16)$$

The variables p_{aw}, Q_{pat}, and Q_{out} are considered as outputs and the resulting closed-loop system is described as follows:

$$\begin{bmatrix} p_{\text{aw}} \\ Q_{\text{pat}} \\ Q_{\text{out}} \end{bmatrix} = \begin{bmatrix} \mathbf{A}(e_{LS}) & R_{\text{leak}} R_{\text{lung}} s \\ C(e_{LS}) & R_{\text{leak}} R_{\text{lung}} s \\ D(e_{LS}) & R_{\text{leak}} R_{\text{lung}} s \end{bmatrix} \begin{bmatrix} e_{LS} \\ 1 + C(e_{LS}) (R_{\text{leak}} + R_{\text{lung}}) s \end{bmatrix}. \quad (17)$$

with

$$\mathbf{A}(e_{LS}) = \begin{bmatrix} -R_{\text{leak}} - e_{LS} C_{\text{lung}} R(e_{LS}) & \frac{R_{\text{leak}}}{C_{\text{lung}} R(e_{LS})} \\ 1 & -R_{\text{leak}} - e_{LS} C_{\text{lung}} R(e_{LS}) \end{bmatrix},$$

$$C(e_{LS}) = \begin{bmatrix} 1 & \frac{R_{\text{leak}} R_{\text{lung}}}{C(e_{LS})} & \frac{R_{\text{leak}} R_{\text{lung}}}{R(e_{LS})} \\ \frac{R_{\text{leak}} R_{\text{lung}}}{C(e_{LS})} & \frac{R_{\text{leak}} R_{\text{lung}}}{R(e_{LS})} & \frac{R_{\text{leak}} R_{\text{lung}}}{R(e_{LS})} \end{bmatrix},$$

$$D(e_{LS}) = \begin{bmatrix} \frac{R_{\text{leak}} R_{\text{lung}}}{C(e_{LS})} & \frac{R_{\text{leak}} R_{\text{lung}}}{R(e_{LS})} & \frac{R_{\text{leak}} R_{\text{lung}}}{R(e_{LS})} \end{bmatrix}.$$

Note that the dynamics in (17) are in fact nonlinear in the estimation error e_{LS} because of the dependency of the system matrices on this estimation error. Next, the system is analyzed for a constant least-squares estimation error e_{LS}. In particular, we are interested in these linear dynamics for $e_{LS} = 0$ to understand the closed-loop system behavior, with hose pressure compensation once a perfect hose resistance estimate is available. This analysis is performed by means of the transfer function of the linear system with a constant estimation error. From this transfer function strong performance features of the closed-loop system are obtained.

Using the system dynamics in (17) and (18), the transfer function from the inputs p_{aw} and p_{pat} to the output p_{aw} is computed. Hereto, the closed-loop system is rewritten to the following form:

$$\dot{p}_{\text{lung}} = \mathbf{A} \dot{p}_{\text{lung}} + \mathbf{B} u$$

with a combined input vector $u = [p_{\text{target}} \ p_{\text{pat}}]^T$,

$$\mathbf{A} = \mathbf{A}(e_{LS}), \ \mathbf{B} = \begin{bmatrix} \mathbf{B}(e_{LS}) & 1 \end{bmatrix}, \quad (21)$$

$$\mathbf{C} = \mathbf{C}(e_{LS}), \ \mathbf{D} = \begin{bmatrix} \mathbf{D}(e_{LS}) & 0 \end{bmatrix}, \quad (22)$$

where $\mathbf{C}(e_{LS})$ and $\mathbf{D}(e_{LS})$ are the first elements in $\mathbf{C}(e_{LS})$ and $\mathbf{D}(e_{LS})$, respectively. Using this form of the closed-loop system, the transfer function from u to p_{aw} is obtained

$$p_{\text{aw}}(s) = \mathbf{C}(s - \mathbf{\bar{A}})^{-1} \mathbf{\bar{B}} + \mathbf{\bar{D}} \quad (23)$$

with $s \in \mathbb{C}$ the Laplace variable. Using this, an expression for p_{aw} is obtained

$$p_{\text{aw}}(s) = P_1 p_{\text{target}}(s) + P_2 p_{\text{pat}}(s)$$

(24)

with

$$P_1 = \frac{R_{\text{leak}} + C_{\text{lung}} R_{\text{leak}} R_{\text{lung}} s}{R_{\text{leak}} + C_{\text{lung}} R_{\text{leak}} R_{\text{lung}} s + e_{LS}(1 + C_{\text{lung}} (R_{\text{leak}} + R_{\text{lung}}) s)}$$

and

$$P_2 = \frac{C_{\text{lung}} e_{LS} R_{\text{leak}}}{R_{\text{leak}} + C_{\text{lung}} R_{\text{leak}} R_{\text{lung}} s + e_{LS}(1 + C_{\text{lung}} (R_{\text{leak}} + R_{\text{lung}}) s)}.$$
B. Recursive least squares estimation of the hose resistance

In the previous section, the equations describing the proposed controlled plant model are presented for a given (constant) hose resistance estimate \(\hat{R}_{\text{lin}} \). Since the hose resistance is an unknown parameter, an RLS estimator that estimates the value of \(R_{\text{lin}} \) automatically during ventilation is proposed; hence no additional calibration steps are required in the hospital. In this particular application, an RLS algorithm with an exponential forgetting factor \(\beta \) is used [17, p. 200], since data far in the past is considered less important than more recent data. A schematic representation of the system including the hose resistance estimator is depicted in Fig. 4.

The RLS estimator with forgetting factor is given by\(^1\):

\[
\dot{\hat{R}}_{\text{lin}} = \frac{p}{m^2} \Delta p - \hat{R}_{\text{lin}} \frac{Q_{\text{out}}}{m^2},
\]

\[
P = \beta P - P \hat{R}_{\text{lin}} \frac{Q_{\text{out}}^2}{m^2},
\]

where \(Q_{\text{out}} \) is the exciting variable, \(P(t) \) is called the covariance, and \(\Delta p = R_{\text{lin}} Q_{\text{out}} \) represents the normalized estimation error of the pressure drop, with \(m^2 > 0 \) a constant normalization parameter. Since \(\Delta p = R_{\text{lin}} Q_{\text{out}} \), \(e_{\text{LS}}(t) = R_{\text{lin}} - \hat{R}_{\text{lin}}(t) \), and \(R_{\text{lin}} \) is a constant, the least squares error dynamics are written as follows:

\[
\dot{e}_{\text{LS}} = -P \frac{Q_{\text{out}}^2}{m^2} e_{\text{LS}}.
\]

The resulting closed-loop dynamics with estimator and hose compensation controller are given by (17), (18), (26), and (27).

The parameters \(\beta \) and \(P(0) \) should be chosen such that convergence is sufficiently fast, i.e., within a couple of breaths. However, choosing \(\beta \) too high results in fast convergence but might also result in strong oscillations in the parameter due to measurement noise and effects that are not captured by the hose model. Furthermore, \(\beta \) and \(P(0) \) should be positive to ensure stability as discussed in the following section. Additionally, in this paper, the constant normalization parameter \(m \) is chosen to be one, i.e., \(m = 1 \), to reduce the number of tuning parameters.

C. Stability analysis

The closed-loop system dynamics with the adaptive controller are given by (17), (18), (26), and (27). In this section, stability conditions for the closed-loop controlled system are derived. First, several auxiliary results are presented. Using these auxiliary results, Theorem 1 is presented below. Theorem 1 provides sufficient conditions for exponential convergence to zero of the tracking error \(e(t) \) and the estimation error \(e_{\text{LS}}(t) \). Herein, we consider time-varying pressure targets \(p_{\text{target}}(t) \), unknown patient effort \(p_{\text{pat}}(t) \), and unknown patient-hose parameters, i.e., resistances and compliance. In support of the proofs, the auxiliary lemmas in the appendix are used.

First, a Persistently Exciting (PE) signal is defined.

\(^1\)The notation equivalents to the notation of [17, p. 200] are \(R_{\text{lin}} = \theta^* \), \(\hat{R}_{\text{lin}} = \theta \), \(Q_{\text{out}} = \phi_0 \), and \(\Delta p = z \).

Definition 1. A piece-wise continuous scalar signal \(\phi(t) \) is PE if there exist constants \(\alpha_0, \alpha_1, T_0 \in \mathbb{R}_{>0} \) such that

\[
\alpha_1 \geq \frac{1}{T_0} \int_{T_0}^{t + T_0} \phi^2(\tau) \, d\tau \geq \alpha_0, \forall t \geq 0.
\]

Furthermore, the RLS estimator in (26) and (27) is assumed to satisfy Assumption 1.

Assumption 1. The RLS estimator in (26) and (27) is designed and initialized such that the following properties hold:

- \(P(0) \) is chosen to be positive, i.e., \(P(0) > 0 \).
- \(\hat{R}_{\text{lin}}(0) \) is chosen such that the following inequalities hold (with \(\varepsilon > 0 \) a small constant):

\[
\hat{R}_{\text{lin}}(0) < R_{\text{lin}} + R_{\text{leak}},
\]

\[
\hat{R}_{\text{lin}}(0) \leq R_{\text{lin}} + \frac{R_{\text{leak}} R_{\text{lung}}}{R_{\text{leak}} + R_{\text{lung}} - \varepsilon}.
\]

- \(\beta \) is designed to be positive, i.e., \(\beta > 0 \).

Note that we can always design and initialize the RLS estimator such that Assumption 1 holds. Furthermore, choosing \(\hat{R}_{\text{lin}}(0) = 0 \) directly ensures the inequalities in Assumption 1, since all resistances are positive, though this may be a conservative initial estimate for the hose resistance.

Assumption 2 below states that the target pressure profile is always positive and bounded.

Assumption 2. \(p_{\text{target}}(t) \) is bounded and positive by design; in particular, \(\varepsilon_1 < p_{\text{target}}(t) < \infty, \forall t \geq 0 \), with \(\varepsilon_1 > 0 \) a positive constant.

This is a valid assumption, since a positive and bounded target pressure is desired during positive pressure ventilation see Fig. 2, with PEEP > 0.

Assumption 3 below states that the disturbance \(p_{\text{pat}}(t) \) is bounded.

Assumption 3. The patient effort \(p_{\text{pat}}(t) \) is a bounded signal. Furthermore, its time derivative \(\dot{p}_{\text{pat}}(t) \) is a bounded signal as well.

Assumption 3 is valid in practice, since a patient cannot generate unbounded pressure or derivatives in pressure.

Note that PE-conditions on the excitation signals are required to guarantee RLS estimators with a forgetting factor to converge, see Corollary 4.3.2 in [17]. Here, the exciting variable \(Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) \) is not an external signal, but a variable dependent on the states, see (17) and (18). This complicates the stability analysis and requires an analysis of the PE-properties of \(Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) \) as in Lemma 1 below. Note that no additional excitations are induced to ensure the PE condition, i.e., \(Q_{\text{out}} \) is PE in the considered, common, ventilation scenarios.

Lemma 1. Consider the closed-loop system dynamics defined by (17), (18), (26), and (27) and adopt Assumptions 1, 2, and 3. Then, \(Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) \) is PE as defined in Definition 1.

Proof. To ensure the existence of upper bound \(\alpha_1 \) of the PE condition in Definition 1, Lemma 5 in the Appendix is invoked, which ensures that \(Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) \) is
bounded for all $t \geq 0$. Since $Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t))$ is bounded, $\alpha > 0$ indeed exists such that the upper bound in (28) is satisfied for $\phi(t) := Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t))$.

Next, we have to show that the lower bound α_0 in the PE condition in (28) exists. For such lower bound to exist, the following equality should not hold for any $t^* \geq 0$ for some $T_0 \in \mathbb{R}_{>0}$:

$$Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) = 0, \forall t \in [t^*, t^* + T_0].$$

(29)

If there is no output flow, i.e., $Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) = 0$, then from (2), $-Q_{\text{leak}} = Q_{\text{pat}}$. Furthermore, the pressure drop $p_{\text{aw}} - p_{\text{aw}} = \Delta p = R_{\text{in}} Q_{\text{out}}$ and the estimated pressure drop $\Delta \hat{p} = R_{\text{in}} Q_{\text{out}}$ are also under such condition. Using this and Assumption 2 gives $p_{\text{aw}}(t) = p_{\text{out}}(t) = p_{\text{target}}(t) \geq e_1$, $\forall t \in [t^*, t^* + T_0]$ if $Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t)) = 0, \forall t \in [t^*, t^* + T_0]$. Moreover, $-Q_{\text{leak}} = Q_{\text{pat}}$ in combination with (3) gives

$$-\frac{p_{\text{target}}}{R_{\text{E}}} = \frac{p_{\text{target}} - p_{\text{lung}}}{R_{\text{lung}}},$$

(30)

which is rewritten to obtain

$$p_{\text{lung}}(t) = \frac{R_{\text{lung}}}{R_{\text{leak}}} p_{\text{target}}(t) + p_{\text{target}}(t), \forall t \in [t^*, t^* + T_0].$$

(31)

Using (4) and (31) we obtain

$$\frac{1}{C_{\text{lung}}} \int_{t^*}^{t} P_{\text{pat}}(\tau) d\tau + p_{\text{pat}}(t) + p_{\text{lung}}(t^*)$$

$$= \frac{R_{\text{lung}}}{R_{\text{leak}}} p_{\text{target}}(t) + p_{\text{target}}(t), \forall t \in [t^*, t^* + T_0],$$

which is rewritten to

$$-\frac{1}{C_{\text{lung}} R_{\text{leak}}} \int_{t^*}^{t} \frac{R_{\text{lung}}}{R_{\text{leak}}} P_{\text{pat}}(\tau) d\tau + p_{\text{pat}}(t) + p_{\text{lung}}(t^*)$$

$$= \frac{R_{\text{lung}}}{R_{\text{leak}}} P_{\text{pat}}(t) + p_{\text{target}}(t), \forall t \in [t^*, t^* + T_0],$$

(32)

using $Q_{\text{pat}} = -\frac{p_{\text{target}}}{R_{\text{E}}}$. We can choose a value $T_0 \in \mathbb{R}_{>0}$, such that this will not hold for any $t^* \geq 0$. If we take $T_0 \rightarrow \infty$, the term with the integral will go to minus infinity, using Assumption 2. We know that $p_{\text{pat}}(t)$ and $p_{\text{lung}}(t^*)$ are bounded using Assumption 3 and Lemma 4, respectively. Hence, the left-hand side of the equation will become negative for large values of T_0 and the right-hand side is always positive by Assumption 2. Since (32) does not hold for $T_0 \rightarrow \infty$, we know that (29) does not hold for any t^* for some very large T_0. Therefore, we can conclude that $Q_{\text{out}}(p_{\text{lung}}(t), e_{\text{LS}}(t), p_{\text{target}}(t))$ is PE, according to Definition 1.

Finally, using Lemma 1, and Lemmas 4 and 5 in the Appendix, stability of the closed-loop system including the RLS estimator is proved. More precisely, Theorem 1 shows exponential convergence of the least squares error $e_{\text{LS}}(t)$ and the tracking error $e(t)$ to zero.

Theorem 1. Consider the system dynamics (17), (18), (26), and (27) and suppose that Assumptions 1, 2, and 3 hold. Then, solutions of the dynamical system (17), (18), (26), and (27) have the following properties:

- $P(t)$, $P^{-1}(t)$, $p_{\text{lung}}(t)$ and $Q_{\text{out}}(t)$ are bounded $\forall t \geq 0$,
- $e_{\text{LS}}(t) = R_{\text{in}} - \dot{R}_{\text{in}}(t)$ and $e(t) = p_{\text{target}}(t) - p_{\text{aw}}(t)$ exponentially converge to zero.

Proof. First of all, the boundedness of p_{lung} and Q_{out} are shown in Lemma 4 and 5, respectively, see the Appendix. Furthermore, using Lemma 2 we know that $P(t)$ and $P^{-1}(t)$ are bounded $\forall t \geq 0$.

From Lemma 1, we know that the PE property holds for $Q_{\text{out}}(t)$. Therefore, Corollary 4.3.2 [17] can be used to show that $e_{\text{LS}}(t)$ is exponentially converging to zero.

Finally, we have to show that $e(t)$ exponentially converges to zero. By substituting the airway pressure p_{aw} defined in (17) and (18), into the error definition $e(t)$, defined in (1), the tracking error can be written as:

$$e(t) = -R_{\text{leak}} p_{\text{lung}}(t) + (R_{\text{leak}} + R_{\text{lung}}) p_{\text{target}}(t)$$

$$e_{\text{LS}}(t) \left(R_{\text{leak}} + R_{\text{lung}} \right) + R_{\text{leak}} R_{\text{lung}}$$

(33)

Since, firstly $p_{\text{lung}}(t)$ is bounded (Lemma 4), secondly $p_{\text{target}}(t)$ is bounded (Assumption 2) and, thirdly $e_{\text{LS}}(t)$ is bounded away from zero (as shown in Lemma 4), it is guaranteed that $v(t)$ in (33) is bounded. Since $v(t)$ is bounded $\forall t \geq 0$, i.e., there exists a bounded v_{max}, such that $|v(t)| \leq v_{\text{max}}, \forall t \geq 0$, we can write

$$|e(t)| \leq v_{\text{max}} e_{\text{LS}}(t), \forall t > 0.$$

(34)

Since $e_{\text{LS}}(t)$ converges to zero exponentially, (34) shows that $e(t)$ also converges to zero exponentially.

Theorem 1 ensures exponential convergence of the tracking error $e(t)$ to zero for a time-varying target pressure, under mild conditions on the initial estimate for the hose resistance and the target pressure profile $p_{\text{target}}(t)$. Furthermore, this property is independent of the unknown disturbance induced by the patient’s breathing effort, as long as it remains bounded. In control systems, perfect tracking is typically possible when inverse-plant feedforward is applied and no further disturbances are present. In this case, it is achieved by compensating for the disturbance through feedback. More precisely, the measured flow Q_{out} that is used in the feedback loop contains the disturbance, i.e., Q_{out} depends on p_{pat} through p_{lung}. The estimate of the hose resistance is used to compensate for the pressure drop, such the target pressure is an invariant solution of the closed-loop dynamics. This can be seen in equation (24) with $e_{\text{LS}} = 0$, which gives $p_{\text{aw}} = p_{\text{target}}$ independent of the patient effort and dynamics. This is achieved independent of the system, i.e., patient and hose, parameters as mentioned in Remark 1. The system parameters only affect the flow and therewith the convergence speed of the hose-resistance estimate.

Remark 1. The relation between the hose-induced pressure drop Δp and the measured flow through the hose Q_{out} is independent of the patient and leak parameters, and the patient effort. The patient and leak parameters only influence the measured blower output flow Q_{out} and therewith the convergence speed of the estimator is affected. However, exact tracking of the target pressure independent of patient and leak parameters, and the patient effort is achieved.
V. SIMULATION CASE STUDY

In this section, the improvement in tracking performance of the proposed adaptive control approach compared to state-of-practice control strategies is shown through simulations. Performance of the different control strategies is compared by analyzing the pressure tracking, i.e., rise-time, overshoot, undershoot, and settling time. Furthermore, overshoot in patient flow is considered, since a decrease in overshoot prevents false triggering and improves patient comfort.

Two different scenarios are considered in this section. In Section V-A, a sedated patient, i.e., \(p_{\text{pat}}(t) = 0 \), is considered under Pressure Controlled Ventilation (PCV) ventilation. In Section V-B, a spontaneously breathing patient, i.e., \(\exists t \geq 0 : p_{\text{pat}}(t) \neq 0 \), under Continuous Positive Airway Pressure (CPAP) ventilation is considered.

In the case with a sedated patient, a step in the hose resistance is introduced to show that the new control approach can handle changes in resistance, which may be induced by clogging of a filter. The following two state-of-practice control strategies are considered to benchmark against:

- feedforward control;
- linear feedback control.

The feedforward controller is a unit feedforward; in other words, the desired airway pressure is applied as \(p_{\text{target}} = p_{\text{control}} = p_{\text{pat}} \) and no feedback based on measurements is used. For the linear feedback controller, an integral controller is used to compensate for the pressure drop \(\Delta p \) over the hose. This feedback controller is used in addition to the unit feedforward controller. The integral controller results in convergence of the tracking error to zero for constant target pressures. Because the plant variations are large, the linear feedback controller is tuned for robustness instead of performance resulting in an integral controller with transfer function \(C(s) = \frac{10}{s} \), with \(s \in \mathbb{C} \), the Laplace variable. The RLS estimator parameters and the patient-hose system parameters are presented in Table I.

A. Scenario with sedated patients

First of all, ventilation of sedated patients under PCV is considered. This section is divided in the test case description, the simulation results, and a summary of the main conclusions.

1) **Test case**: In these simulations, target pressures of 5 and 20 mbar are used for the Positive End-Expiratory Pressure (PEEP) and the Inspiratory Positive Airway Pressure (IPAP), respectively. Furthermore, we introduce a step in the hose resistance at \(t = 10 \) s, to show that the controller can handle a change in resistance. This step in resistance is depicted in the bottom figure of Fig. 7.

The resulting airway pressure of the simulations is shown in Fig. 6. These results clearly show that the feedforward controlled system has a steady-state tracking error, which is caused by the pressure drop \(\Delta p \) over the hose. For the linear feedback controller it is observed that the pressure is converging to the desired pressure but there is undesired overshoot and undershoot caused by the feedback controller. This results in non-optimal patient support. More specifically, the undershoot in pressure causes overshoot in the patient flow, see the zoomed inset in the bottom figure of Fig. 6. Overshoot in patient flow may result in false triggers during ventilation modes that allow for patient-triggered breaths, see [6]. The resulting airway pressure of the developed adaptive controller is also displayed in Fig. 6. It shows that during the first breathing cycle the proposed controller behaves almost the same as the feedforward controller. This is caused by the initial estimate of \(R_{\text{lin}}(0) = 0 \), resulting in \(\Delta p \approx 0 \) during the first breath, i.e., the adaptive controller is not compensating the pressure drop yet. In the third breathing cycle, almost perfect tracking with no overshoot and oscillations is achieved. Thereafter, at \(t = 10 \) s, the controller has to adapt to the step in \(R_{\text{lin}} \), which introduces a deviation between the target pressure \(p_{\text{target}} \) and the airway pressure \(p_{\text{pat}} \). This has almost completely vanished after the fifth breathing cycle.

In Fig. 7, the significant improvement in tracking performance is visualized. The tracking error of the adaptive controller indeed converges to zero. The tracking errors of the feedforward and feedback controllers remain the same over successive breaths, with a slight increase when the hose resistance is increased. Furthermore, this figure shows that the estimated resistance is converging to the actual value,

TABLE I: Estimation parameters of the adaptive controller and the patient and hose parameters, as used in the simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.7</td>
<td>(\text{1/s})</td>
</tr>
<tr>
<td>(P(0))</td>
<td>(5 \times 10^{-8})</td>
<td>(\text{s/mL}^2)</td>
</tr>
<tr>
<td>(R_{\text{lin}}(0))</td>
<td>0</td>
<td>(\text{mbar s/L})</td>
</tr>
<tr>
<td>(m)</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>(R_{\text{look}})</td>
<td>24</td>
<td>(\text{mbar s/L})</td>
</tr>
<tr>
<td>(R_{\text{lung}})</td>
<td>5</td>
<td>(\text{mbar s/L})</td>
</tr>
<tr>
<td>(R_{\text{lin}}(0))</td>
<td>4.4</td>
<td>(\text{mbar s/L})</td>
</tr>
<tr>
<td>(C_{\text{lung}})</td>
<td>20</td>
<td>(\text{mL/mbar})</td>
</tr>
</tbody>
</table>

Fig. 6: Simulation results of the feedforward, feedback and adaptive control strategy. This figure shows the resulting airway pressure and patient flow.
as expected. Therefore, no manual calibration of the hose is required, such that no additional time of the hospital staff is required. It is also clearly observed that the controller can handle the step in hose resistance, since the tracking error is converging to zero after the step in resistance.

Convergence of the estimator takes about 10 seconds, i.e., 2-3 breaths. In practice, this is sufficiently fast because a patient breaths over 20,000 times a day. Therefore, these three breaths are considered negligible in practice. Furthermore, a manual calibration typically takes longer, during which the patient is not ventilated at all. Therefore, the adaptive scheme is preferred over a manual calibration procedure.

Pressure profiles for different lung characteristics (resistance and compliance, see legend) are displayed in Fig. 8. This figure shows that the control approach works for a broad range of patients. The patient parameters do affect the flow and, therewith, the estimator performance is slightly affected. However, the estimator will converge and the compensation ultimately achieves perfect tracking independent of the patient parameters.

3) Main conclusions: The simulations show that the estimation error $e_{LS}(t)$ converges to zero and, therewith, the tracking error $e(t)$ converges to zero as well, as expected from Section IV-C. Furthermore, the simulations show that there is no overshoot in patient flow, preventing false triggering of breaths. It is also shown that the adaptive controller works for a broad range of patients and is able to handle changes in the hose resistance.

B. Scenario with spontaneously breathing patients

Since many patients are conscious, and therewith able to breath them selfs, another common ventilation mode is considered, namely, CPAP. CPAP aims to maintain a constant positive airway pressure to assist the patient’s breathing and to keep the lungs open. Also this section is divided in the test case description, the simulation results, and a summary of the main conclusions.

1) Test case: The considered patient has a respiratory rate of 15 breaths per minute and generates a pressure of -12 mbar in the lungs. The patient effort profile is a semi-sinusoidal profile, similar to semi-sinusoidal profile of the ASL 5000 Breathing Simulator, which is used in the experiments in Section VI. The patient effort curve is depicted in Figure 9. Note that there is no consensus on how to model realistic patient effort according to [18]. However, the default semi-sinusoidal of the ASL 5000 Breathing Simulator is most often used according to [19]. The target pressure used in this simulation is 5 mbar. Furthermore, we used the same control and patient-hose parameters as in the previous section, see Table I.

2) Simulation results: The resulting airway pressure p_{aw} for the feedforward, feedback, and adaptive controller are depicted in Fig. 10. It is clearly shown that the airway pressure converges to the desired constant pressure with the adaptive controller. In the other two control approaches, we observe undesired pressure oscillations, caused by the patient’s effort, around the pressure target. This case study shows that the developed adaptive controller improves tracking performance significantly during CPAP ventilation.

3) Main conclusions: These simulations show that the tracking performance is improved, see Fig 10. The adaptive controller achieves exact tracking of the desired airway pressure, whereas the feedforward and feedback controller show significant spikes in the airway pressure, caused by the patient’s effort.
VI. EXPERIMENTAL CASE STUDY

In order to show the practical applicability and performance of the adaptive controller, an experimental case study has been conducted. First of all, the results of two experiments for the scenario of a fully sedated patient on PCV are shown. Thereafter, the results for the scenario of a spontaneously breathing patient with CPAP ventilation are presented.

The main components of the experimental setup used in this case study are depicted in Fig. 11. In Fig. 11a, a blower-driven mechanical ventilation module of Macawi is depicted [20]. Inside this module, the commercially available Macawi respiratory centrifugal blower with its custom motor and motor controller are used for actuation of the system [20]. The blower flow Q_{out} is measured using a MEMS thermal flow sensor inside the respiratory module. The airway pressure p_{aw} and the blower outlet pressure p_{out} are both measured using a gauge pressure sensor inside the respiratory module. The ventilator is attached to a dSPACE system (dSPACE GmbH, Paderborn, Germany), where the controls are implemented using MATLAB Simulink (MathWorks, Natick, MA) running at a sampling frequency of 500 Hz.

Furthermore, the ASL 5000TM Breathing Simulator (IngMar Medical, Pittsburgh, PA), as depicted in Fig. 11b, is used to emulate the patient. This lung simulator can be used to emulate a wide variety of patients with a linear resistance and compliance. Furthermore, it is able to simulate a patient with breathing effort.

The patient and controller parameters in the experiments are the same as the corresponding parameters in the simulations of Section V, see Table I. However, the hose and leak resistance in the simulations are estimated using an offline least squares fit of the actual hose resistance, this results in a slight parametric difference between the simulation and experimental scenarios.

A. Scenario with sedated patients

In this section, ventilation of a sedated patient under PCV is considered. This section is divided in the test case description, experimental results, and a summary of the main conclusions.

1) Test case: The same patient and controller parameters as in the simulation case study for sedated patients are used, see Table I. Furthermore, two different target profiles are considered. First of all, a target profile is used with a PEEP and IPAP of 5 and 10 mbar, respectively. This first test case, with low pressures, is considered to validate the developed control strategy and its theory. These low pressures result in low flows, hence, the linear component of the hose resistance is dominant over the quadratic part. Thereafter, the same target profile as in the simulation case study is used with a PEEP and IPAP of 5 and 20 mbar, respectively. Another difference with the simulation-based case study is that the hose resistance in the experiments is constant. In other words, the experiments do not contain a step in the hose resistance.

2) Experimental results: First of all, the results of the experiments with the IPAP of 10 mbar are presented and discussed. Thereafter, the results of the experiments with the IPAP of 20 mbar are shown and discussed.

The results of the experiments with the IPAP of 10 mbar are displayed in Fig. 12 and 13. The airway pressure and tracking error $e = p_{\text{target}} - p_{\text{aw}}$ are depicted in this figure. The figure clearly shows the constant offset in the airway pressure for the unit feedforward controller. Furthermore, it is clearly shown that the feedback controller has significant overshoot and undershoot. As expected, the adaptive controller converges after approximately 3 breaths, see Fig. 13. The resistance estimate is slightly oscillating upon convergence, this is caused by the quadratic nature of the hose-resistance. However, these oscillations are considered small because the outlet flow Q_{out} remains in a small interval. Fig. 12 shows that upon convergence the adaptive controller achieves significantly better tracking performance than the feedforward controller. Furthermore, the adaptive controller shows significantly less overshoot and undershoot than the linear feedback controller. These overshoots are undesired because the resulting peak pressures might damage the lungs. Furthermore, the undershoot is undesired since it causes oscillations in the patient flow possibly resulting in false triggering. Considering the tracking error in the bottom figure of Fig. 12, it is noticed that still sharp peaks are present during the increase and decrease of the pressure, for both feedback control strategies. These peaks are mainly caused by a delay in the blower transfer from p_{control} to p_{out} and the measurement delay of the airway.

![Graph showing simulation results of feedforward, feedback, and adaptive control strategy.](image)

Fig. 10: Simulation results of the feedforward, feedback, and adaptive control strategy. This figure shows the resulting airway pressure of a spontaneously breathing patient with the CPAP ventilation mode.

![Experimental setup components.](image)

Fig. 11: The main components of the experimental setup.
the airway pressure p_{aw}, The blower delay causes a timing mismatch between the desired controller pressure $p_{control}$ and the blower outlet pressure p_{out}. Furthermore, the measurement delay of the airway pressure p_{aw} causes a timing mismatch between the performance variable p_{aw} and the target pressure p_{target}. This measurement delay is clearly visible in the tracking error during changes of p_{target}.

The results of the experiments with the IPAP of 20 mbar are displayed in Fig. 14 and 15. The obtained response is similar to the simulations for both the feedback as the feedforward controller. The feedforward controller does not compensate the pressure drop over the hose. The feedback controller shows overshoot and undershoot in airway pressure p_{aw}. This causes overshoot in the patient flow, which might cause false triggering in triggered ventilation modes. Hence, such overshoots are highly undesired.

The adaptive controller shows convergence of the airway pressure during the first few strokes. Thereafter, a clear decrease in overshoot and undershoot compared to the linear feedback controller is seen. The reduction in overshoot prevents ventilator-induced lung injury caused by peak pressures. Furthermore, the reduction in undershoot is beneficial in preventing oscillations in the patient flow. These oscillations are unpleasant for the patient and might result in false ventilator induced triggering. Therefore, the adaptive controller improves patient comfort and consistency of the treatment. Besides all these improvements, during the 5th breath the adaptive controller is slightly overcompensating the pressure drop, causing overshoot in the airway pressure, see Fig. 14. This is explained by the fact that a linear resistance model is used to estimate the quadratic hose resistance of the actual hose. This causes the estimator to overestimate the resistance during the start of inhalation. The high flows during inhalation result in a large contribution of the quadratic term to the pressure drop. When the flow has converged to a steady value during the remainder of the inhalation, the controller will overcompensate the pressure drop, causing the pressure to exceed IPAP level. This oscillation of the estimated resistance is clearly shown in Fig. 15.

A visualization of the resistance estimate R_{est} compared to the actual resistance is depicted in Fig. 16. This figure shows the pressure drop Δp over the hose on the left vertical axis and the flow through the hose Q_{out} on the horizontal axis. The estimated resistance model, i.e., after 16 seconds in Fig. 15, is depicted by the blue area, the estimated resistance model is oscillating in this area. The blue dots show the actual measured resistance model of the hose. This shows that the estimate is still fairly accurate in the low outlet flow area, up to 4×10^4 ml/min. The histogram in Fig. 16 displays how often a given flow is measured. Since the flow is mainly in the low flow regime, the linear estimate is fairly accurate on average.

3) Main conclusions: This experimental study shows that the adaptive controller is practically applicable to sedated patients under PCV. The experimental study with low flows shows that the tracking error converges to zero and decreases overshoot and undershoot significantly compared to the linear feedback controller. The error is clearly converging to zero except for the region where the pressure is increasing and decreasing. In these areas the controller is responding slightly

![Fig. 12: Experimental results of the feedforward, feedback, and adaptive control strategy. This figure shows the resulting airway pressure and tracking error of the different controllers with a target pressure of PEEP and IPAP of 5 and 10 mbar, respectively.](image1)

![Fig. 13: Experimentally obtained estimate of the hose resistance for a target pressure of PEEP and IPAP of 5 and 10 mbar, respectively.](image2)

![Fig. 14: Experimental results of the feedforward, feedback and adaptive control strategy. This figure shows the resulting airway pressure and patient flow with a target pressure of PEEP and IPAP of 5 and 20 mbar, respectively.](image3)
too late, which is mainly caused by the presence of delays in the system. In the experimental case study with higher pressures and flows, the tracking error decreased significantly compared to the state-of-practice controllers. In particular, the adaptive controller prevents overshoot in patient flow, which prevents false triggering. It should be noted that performance could be further improved by using a quadratic resistance model in the adaptive controller; this could prevent oscillations of the resistance estimate. Furthermore, it may improve the accuracy of the estimated pressure drop and therewith the tracking performance. To improve performance even further, the delays in the system should be analyzed and compensated in the control strategy. The latter two aspects are considered outside the scope of this work.

B. Scenario with spontaneously breathing patients

In this section, the results of an experiment with a spontaneously breathing patient under CPAP ventilation are presented and discussed. Again, the section is divided in the same subsections, i.e., the test case description, experimental results, and a summary of the main conclusions.

1) Test case: The same setup, i.e., patient, hose, leak, and controllers are used as in the previous experiments. Furthermore, the patient effort is the same as in the simulations and is depicted in Fig. 9. This profile is generated by the ASL 5000 Breathing Simulator, which is used in the experiments. The target pressure used in this simulation is 5 mbar.

2) Experimental results: The resulting airway pressure for all three controllers is depicted in Fig. 17. The feedforward and feedback controller show results comparable to the simulations. The adaptive controller shows an improvement in tracking performance. The biggest improvement is the decrease in undershoot, see the arrow in Fig. 17. Furthermore, the same problem as for the fully sedated patient is seen; the controller is slightly overestimating the resistance during inhalation. This causes the pressure to be slightly higher than desired after inhalation and it is slowly converging to the desired value, see Fig. 17. Furthermore, the figure shows some peaks when the patient starts and ends inhalation, this indicates that the controller does not respond fast enough to the patient-induced disturbance.

3) Main conclusions: This experimental case study shows that the adaptive controller is practically applicable to spontaneously breathing patients as well. The overall performance is improved over the state-of-practice controllers. However, it shows oscillations in the patient airway pressure p_{aw}, whereas the simulations showed exact convergence.

Concluding, the adaptive controller shows an overall improvement in performance over the state-of-practice controllers. However, performance of the adaptive controller could be further improved by using a more realistic hose model, i.e., including a quadratic term. Another problem that affects the performance in experiments is the delay in the sensor line of the airway pressure. This delay causes a timing mismatch between the measured signals. Compensation for this delay in the estimator might improve performance as well.
In this paper, an adaptive control approach for mechanical ventilation is presented. This control approach aims to improve tracking performance for large variations of patient-hose parameters, unintended leakages, and unknown patient breathing efforts. It has been shown through stability analysis that this controller ensures exact tracking of the desired pressure setpoint, independent of the patient-hose parameters, unintended leakages, and unknown breathing efforts. Using this control approach requires no additional calibration of the hose-filter system, which saves valuable time in the intensive care unit of a hospital.

Furthermore, using a simulation study, it is shown that the adaptive controller achieves exact tracking, and therewith improves tracking performance significantly over state-of-practice controllers. Through an experimental case study it is shown that the controller is practically applicable. In these experiments, the adaptive controller shows an improvement in pressure tracking performance, i.e., improved rise-time, less overshoot and undershoot, and faster settling times, compared to the state-of-practice linear feedback controller. Furthermore, it prevents overshoot in patient flow, which might prevent false triggers and improve patient comfort.

To improve the performance in practice, the adaptive controller could be extended to contain a quadratic hose resistance term. Furthermore, the delays in the system should be incorporated in the controller design. This might prevent the oscillations of the hose resistance estimate, resulting in improved tracking performance in practice.

In future work other control methods should be considered to improve control performance of mechanical ventilation further. A key example is a data-driven control method, to improve control performance of mechanical ventilation systems, which saves valuable time in the intensive care unit of a hospital.

Appendix

Auxiliary Lemmas

The lemmas presented in this Appendix are used to prove Lemma 1 and Theorem 1, in Section IV-C. Lemmas 2 to 4 below serve as auxiliary results to Lemma 5, in which boundness of \(Q_{\text{out}}(t) \) is shown. First, Lemma 2 shows that \(P(t) \) is always non-negative.

Lemma 2. Consider the covariance dynamics in (26) and suppose that Assumption 1 holds. Then, \(P(t) > 0 \) for all \(t \geq 0 \).

Proof. Using (26), it can be concluded that sufficiently small positive \(P \) results in \(\dot{P} > 0 \). Hence, \(P(t) > 0 \) for all \(t \geq 0 \) if Assumption 1 \((P(0) > 0)\) holds.

In Lemma 3, it is proven that \(|e_{\text{LS}}(t)| \) is non-increasing (and bounded), hence, the sign of \(e_{\text{LS}}(t) \) will never change.

Lemma 3. Consider the least squares error dynamics in (27) and suppose that Assumption 1 holds. Then, \(|e_{\text{LS}}(t)| \) is non-increasing (and bounded) for all \(t \geq 0 \) and the sign of \(e_{\text{LS}}(t) \) will never change.

Proof. The differential equation governing the dynamics of \(e_{\text{LS}} \) is given in (27), this can be written as \(\dot{e}_{\text{LS}} = -\alpha(t)e_{\text{LS}} \), with \(\alpha(t) := \frac{P\dot{Q}_{\text{out}}(t)}{m^2} \). From Lemma 2, the fact that \(Q_{\text{out}}^2(t) > 0 \), and \(m^2 > 0 \), it is ensured that \(\alpha(t) \geq 0 \) and thus that \(|e_{\text{LS}}(t)| \)
is non-increasing (and bounded) for all \(t \geq 0 \) and the sign of \(e_{LS}(t) \) will never change.

In Lemma 4, boundedness of \(p_{\text{lung}} \) is shown.

Lemma 4. Consider the lung dynamics in (16) and suppose that Assumption 1, 2, and 3 hold. Then, \(p_{\text{lung}}(t) \) is bounded for all \(t \geq 0 \).

Proof. First, it should be noted that \(p_{\text{target}} \) is bounded by design (Assumption 2) and \(p_{\text{pat}} \) is bounded (Assumption 3). Therefore, \(p_{\text{lung}} \) (see (16)) is bounded if, firstly, \(-\frac{R_{\text{leak}}}{C_{\text{lung}}} e_{LS}(t) \) remains negative and bounded for all \(t \geq 0 \), note that \(e_{LS} \) is bounded, see Lemma 3 and, secondly, \(e_{LS}(R_{\text{leak}} + R_{\text{lung}}) + R_{\text{leak}} R_{\text{lung}} \) is bounded away from zero, i.e., \(|e_{LS}(R_{\text{leak}} + R_{\text{lung}}) + R_{\text{leak}} R_{\text{lung}}| > \varepsilon \), for some \(\varepsilon > 0 \), for all \(t \geq 0 \). If these conditions hold, \(p_{\text{lung}} \) in (16) has the opposite sign of \(p_{\text{lung}} \) for large enough values of \(|p_{\text{lung}}(t)| \) and therefore \(p_{\text{lung}}(t) \) is bounded. The following inequalities ensure the required properties:

(I) \(e_{LS}(t) > -R_{\text{leak}}, \forall t \geq 0 \)

(II) \(e_{LS}(t) \geq -\frac{R_{\text{leak}} R_{\text{lung}}}{R_{\text{leak}} + R_{\text{lung}}} + \varepsilon, \forall t \geq 0 \) for some \(\varepsilon > 0 \).

Using Lemma 3, it is obtained that both inequalities, (I) and (II), hold for all \(t \geq 0 \) if these hold at \(t = 0 \), since the sign of \(e_{LS} \) will not change and \(|e_{LS}| \) is non-increasing. Using \(e_{LS} := R_{\text{lin}} - \hat{R}_{\text{lin}} \), it is obtained that both inequalities, (I) and (II), are ensured by Assumption 1, hence \(p_{\text{lung}} \) is bounded for all \(t \geq 0 \). \(\square \)

Finally, in Lemma 5 boundedness of \(Q_{\text{out}}(t) \) is ensured.

Lemma 5. Consider the output flow \(Q_{\text{out}}(t) \) induced by the dynamics (17) and (18) and suppose that Assumptions 1, 2, and 3 hold. Then, for all \(t \geq 0 \), \(Q_{\text{out}}(t) \) is bounded, hence, \(Q_{\text{out}}(t) \in L_{\infty} \).

Proof. \(Q_{\text{out}}(t) \) is characterized by (17) and (18). Since \(p_{\text{lung}} \) is bounded (Lemma 4) and \(p_{\text{target}} \) is bounded by design (Assumption 2), \(Q_{\text{out}}(t) \) is bounded if \(e_{LS}(R_{\text{leak}} + R_{\text{lung}}) + R_{\text{leak}} R_{\text{lung}} \) is bounded away from zero for all \(t \geq 0 \), see the expression \(Q_{\text{out}}(t) \) in (17) and (18). The latter is ensured as well, as shown in the proof of Lemma 4. Since \(Q_{\text{out}}(t) \) is bounded, we also know that \(Q_{\text{out}}(t) \in L_{\infty} \). \(\square \)