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a b s t r a c t

The notion of frequency response functions has been generalized to nonlinear systems in several ways.
However, a relation between different approaches has not yet been established. In this paper, frequency
domain representations for nonlinear systems are uniquely connected for a class of nonlinear systems.
Specifically, by means of novel analytical results, the generalized frequency response function (GFRF)
and the higher order sinusoidal input describing function (HOSIDF) for polynomialWiener–Hammerstein
systems are explicitly related, assuming the linear dynamics are known. Necessary and sufficient
conditions for this relation to exist and results on the uniqueness and equivalence of the HOSIDF and
GFRF are provided. Finally, this yields an efficient computational procedure for computing the GFRF from
the HOSIDF and vice versa.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Important research has been done to extend frequency domain
analysis and modeling techniques to nonlinear systems. For linear
and time invariant (LTI) systems, frequency domain techniques
have resulted in a widespread acceptance in the engineering
community for analysis, modeling and controller design. However,
the linearity assumption can only be satisfied to a certain extent
for physical systems.

Thewidespread acceptance of frequency domain techniques for
LTI systems has been a strongmotivation for the extension of these
methodologies for nonlinear systems. In Billings and Tsang (1989)
and Lang, Billings, Yue, and Li (2007) the generalized frequency
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response function (GFRF) for nonlinear systems has been defined.
An alternative frequency response function for nonlinear systems
is considered in Pavlov, van de Wouw, and Nijmeijer (2007).
In Schoukens, Pintelon, Dobrowiecki, and Rolain (2005), frequency
response based techniques for linear systems are extended to
analyze the validity of a linear approximation of nonlinear systems.
Finally, inNuij, Bosgra, and Steinbuch (2006) and Rijlaarsdam,Nuij,
Schoukens, and Steinbuch (2011a,b), generalizations of frequency
response functions, called higher order sinusoidal input describing
functions (HOSIDF), for nonlinear systems are investigated that
only represent a relevant subset of nonlinear effects in terms of
input signal classes.

Although seemingly different approaches have been indepen-
dently developed to analyze and represent nonlinear systems in
the frequency domain, the differences and equivalences between
alternative methods have not yet been established. In this paper
an explicit, analytical relation between the GFRF and HOSIDF is
established for a specific class of nonlinear systems. Apart from
providing valuable insight into the mechanisms that generate the
HOSIDFs and GFRFs, these results allow one to formalize state-
ments on uniqueness and equivalence of bothmodel types. Finally,
this leads to an efficient procedure for computing the GFRF from
the HOSIDFs and vice versa.

The paper is organized as follows. In Section 2, the GFRF and the
HOSIDF are defined. Then, in Section 3, the main contribution of
the paper is presented, that explicitly relates the GFRF and HOSIDF
for polynomialWiener–Hammerstein systems. Finally, in Section 4
conclusions are presented.
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Fig. 1. PWH system.

Notation. Throughout, signals are assumed scalar and real valued,
and are denoted by lower case Roman letters, e.g. x(t) ∈ R. The
corresponding Fourier transform is defined as: F {x(t)} =


∞

−∞

x(t)e−2π iξ tdt , with ξ ∈ R the frequency in Hz. Next, define the
corresponding single-sided spectrum X (ξ) = 2F {x(t)} ∀ξ > 0,
X (ξ) = F {x(t)} for ξ = 0 and X (ξ) = 0 ∀ξ < 0. Moreover,
vectors containing specific spectral components X[ℓ] = X ((ℓ −

1)ξ0) at harmonics k = ℓ − 1 of ξ0 are denoted in capital Roman
letters. Finally, all systems considered in this paper are single-
input, single-output (SISO), time invariant and R>0 = {x ∈ R|x >

0}. The following class of block structured nonlinear systems is
considered throughout this paper.

Definition 1 (PWH Systems). Consider the system depicted in
Fig. 1, which consists of a series connection of a linear time
invariant (LTI) block G−(ξ) such that q = G−u, a static nonlinear
mapping ρ : R → R and another LTI block G+(ξ) such that y =

G+r . The system has one input u(t) ∈ R, one output y(t) and
intermediate signals q(t) and r(t). The nonlinearity ρ is a static,
polynomial mapping of degree P and coefficients αp ∈ R, i.e.

ρ : r(t) =

P
p=1

αpqp(t). (1)

2. Frequency response functions for nonlinear systems

In this section, two notions of frequency response functions
for nonlinear systems are defined. First, the GFRF is defined.
Hereto, let the nonlinear system be represented by its Volterra
series (Schetzen, 1980). In this case the input–output dynamics are
captured in a series of Volterra kernels, where the corresponding
pth-order Volterra kernel is given by hp (τ1, τ2, . . . , τp) : Rp

→ R
which is a nonlinear generalization of the impulse response of
LTI systems. The response y(t) ∈ R of such a system with input
u(t) ∈ R equals

y(t) =

∞
p=1


∞

−∞

· · ·


∞

−∞

hp(τ1, . . . , τp)

p
m=1

u(t − τm) dτm. (2)

The multiple Fourier transform of the pth-order Volterra kernel
then yields the corresponding pth-order GFRF.

Definition 2 (Tp(ϖp): GFRF). Consider a system that can be
represented by a Volterra series (2). Then its pth-order GFRF
Tp(ϖp) : Rp

→ C, with ϖp = (ξ1, ξ2, . . . , ξp) ∈ Rp, is defined
as

Tp(ϖp) =


∞

−∞

· · ·


∞

−∞

hp(τ1, . . . , τp)

p
m=1

e−2π iξmτm dτm (3)

(see Billings & Tsang, 1989; Eykhoff, 1974; George, 1959; Schetzen,
1980).

Next, the following intermediate result enables the representation
of GFRFs of PWH as an explicit function of the LTI dynamics G±(ξ)

and the polynomial coefficients αp.
Lemma 1 (GFRF of PWH Systems). Consider a PWH system as
in Definition 1. Then the pth-order GFRF Tp(ϖp) as in Definition 2 is
given by

Tp(ϖp) = αp λp(ϖp) (4)

λp(ϖp) = G+


p

ℓ=1

ϖp[ℓ]


p

ℓ=1

G−(ϖp[ℓ]) (5)

whereϖp[ℓ] = ξℓ denotes the ℓth element of ϖp = (ξ1, ξ2, . . . , ξp).
(Proof: Shanmugam & Jong, 1975)

Next, a different approach to frequency domain analysis and
modeling of nonlinear systems, using the higher order sinusoidal
input describing function (HOSIDF), is introduced. In Nuij et al.
(2006); Rijlaarsdam et al. (2011b) the dynamics of a class of SISO
uniformly convergent nonlinear systems (Pavlov, Pogromsky, van
de Wouw, & Nijmeijer, 2004) are considered when such system is
subject to a sinusoidal input:

u(t) = γ cos(2πξ0t + ϕ0) (6)

with γ , ϕ0 ∈ R and ξ0 ∈ R>0. The output of such system is com-
posed of K harmonics of the input frequency, i.e. y(t) =

K
k=0

Hk(ξ0, γ )γ k cos(k(2πξ0t + ϕ0)). Here, Hk(ξ0, γ ) : R>0 × R → C
is the kth-order HOSIDF. This describes the response in terms of
gain and phase at harmonics of the excitation frequency, ξ0, and is
defined as in Rijlaarsdam et al. (2011b).

Definition 3 (Hk(ξ , γ ): HOSIDF). Consider a SISO, uniformly
convergent, time invariant nonlinear system subject to a sinusoidal
input (6). Next, define the output y(t) and single-sided spectra of
the input and output U (ξ), Y (ξ) ∈ C. Then, the kth-order higher
order sinusoidal input describing functionHk(ξ0, γ ) ∈ R>0×R →

C, k = 0, 1, 2, . . ., is defined as

Hk(ξ0, γ ) =
Y (kξ0)
U k(ξ0)

. (7)

The following result reveals that the HOSIDFs of PWH systems can
be written as an explicit function of the LTI dynamics G±(ξ) and
the polynomial coefficients αp.

Lemma 2 (HOSIDFs of PWH Systems). For any PWH system, the
corresponding HOSIDFs of order 1 and higher are given by

H̆(ξ0, γ )

= Ῠ −1(γ )∆̆(ξ0)G+(ξ)[Φ̆(̸ G−(ξ0)) Ω̆ Γ (|G−(ξ0)|γ )α] (8)

where the variables in (8) are defined in Table 1.
(Proof: Rijlaarsdam et al., 2011b).

3. Connecting the GFRF and HOSIDF

In this section, the GFRFs and HOSIDFs for PWH systems are
explicitly related, which constitutes the main result of this paper.
Hereto, consider a PWH systemwith a polynomial nonlinearity (1)
of degree P andknown linear blocksG±(ξ). Then, usingDefinition 2
and Lemma 1, define

T = [T1(ϖ1) T2(ϖ2) . . . TP(ϖP)]
T

Λ = diag([λ1(ϖ1) λ2(ϖ2) . . . λP(ϖP)])

where T (ϖ1, ϖ2, . . . ,ϖP) : R × R2
× · · · × RP

→ CP contains
the GFRFs up to order P and Λ(ϖ1, ϖ2, . . . , ϖP) : R × R2

×

· · · × RP
→ CP×P is a diagonal expansion matrix containing the

expansion terms λp(ϖp) (see (5)) thatmap the LTI dynamicsG±(ξ)
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Table 1
Variables in Eq. (8).

Description Variable Definition

H̆(ξ0, γ ) ∈ CP HOSIDFs H̆(ξ0, γ ) = [H1(ξ0, γ ) H2(ξ0, γ ) . . . HP (ξ0, γ )]T .
Ῠ (γ ) ∈ RP×P Gain compensation matrix Ῠk,k(γ ) = γ k, k = 1, 2, . . . , P and 0 otherwise.
∆̆(ξ0) ∈ RP×P Harmonic selection matrix Diagonal matrix of δ-functions, s.t.

∆̆(ξ0)G(ξ) = diag ([G(ξ0) . . .G(Pξ0)]).
Φ̆(ϕ0) ∈ CP×P Input phase matrix Φ̆k,k(ϕ0) = eikϕ0 , k = 1, 2, . . . , P and 0 otherwise.

Ω̆ ∈ RP×P Inter-harmonic gain matrix ξ̆k,p = 2


p

p − k
2


σpk ∀k ≤ p, k ∈ N≥1 and 0 otherwise. With

σp = p mod 2, σk = k mod 2, σpk = σpσk + (1 − σp)(1 − σk)

and

a
b


=

a!
b!(a−b)! ∀a, b ∈ N, 0 ≤ b ≤ a and 0 otherwise.

Γ (γ ) ∈ RP×P Input gain matrix Γp,p(γ ) =


γ

2

p and 0 otherwise.
α ∈ RP Polynomial coefficients α = [α1 α2 . . . αP ]

T .
and polynomial coefficientsαp to the GFRFsTp(ϖp). Next, consider
the sets Wp ⊆ Rp such that

Wp =


(ξ1, . . . , ξp) ∈ Rp

G+


p

ℓ=1

ξℓ


≠ 0 and G−(ξℓ) ≠ 0


and define W = W1 × W2 × · · · × WP , which includes all
frequencies that do not correspond to an imaginary axis zero of the
LTI dynamics G±(ξ) and defineϖP = {ϖ1, ϖ2, . . . , ϖP}. The first
step in connecting the GFRF and HOSIDF is to relate the polynomial
coefficients αp to the GFRF; see also Lemma 1.

Lemma 3 (Polynomial Coefficients & GFRF). Consider a PWH
system. Then, if and only if ϖP ∈ W, the following bijective mapping
RP

→ CP from the polynomial coefficients αp to the GFRF exists:

T (ϖP) = Λ(ϖP)α. (9)

Proof. The mapping (9) follows directly from (4)–(5) and is
bijective if and only ifΛ is of full rank. SinceΛ is a diagonal matrix,
it is of full rank if and only if |λp(ϖp)| ≠ 0 ∀p. Next, the results in
(5) yield that |λp(ϖp)| = 0 if and only if G+(

p
ℓ=1 ϖp[ℓ]) = 0 orp

ℓ=1 G
−(ϖp[ℓ]) = 0. Hence, |λp(ϖp)| = 0 if and only ifϖp ∉ Wp.

Hence, the mapping (9) is bijective if and only if ϖP ∈ W. �

Next, considering Lemmas 2 and 3 and substitution of the inverse
of (9) in (8) yields a mapping from the GFRFs to the corresponding
HOSIDFs and vice versa.

Theorem 1 (Connecting GFRF and HOSIDF). Consider a PWH
system with known LTI dynamics G±(ξ). If and only if the following
properties hold:

(i) ϖP ∈ W, and
(ii) ξ0 ∈ R>0, and
(iii) γ ≠ 0,

then the GFRFs and HOSIDFs are uniquely related by the bijective
mapping CP

→ CP :

H̆(ξ0, γ ) = R̆(ϖP , ξ0, γ )T (ϖP , ξ0, γ ) (10)

with

R̆(ϖP , ξ0, γ )

= Ῠ −1(γ )∆̆(ξ0)G+(ξ)Φ̆(̸ G−(ξ0))Ω̆Γ (|G−(ξ0)|γ )Λ−1(ϖP).

Proof. The mapping (10) is bijective if and only if R̆ is of full rank.
Thematrix R̆ is of full rank if and only if allmatrices in (10) have full
rank. Matrices Ῠ , ∆̆(ξ0)G+(ξ), Φ̆(̸ G−(ξ0)) and Γ (|G−(ξ0)|γ )
are diagonal and are defined and of full rank for finite ξ0 ∈ R>0 and
γ ≠ 0. Moreover, matrix Λ is of full rank if and only if ϖP ∈ W
(Lemma 3). Finally, analysis reveals that Ω̆ is upper triangular; see
Lemma 2. Next, consider an arbitrary row Ω̆ℓ1 of Ω̆ with its first
nonzero element at the kth column in that row. Now, because of
the rule according to which Ω̆ is generated, any row Ω̆ℓ2 , ℓ2 > ℓ1
has a zero element at the kth position. Hence, there is at least one
element Ω̆ℓ1,k ≠ ζΩℓ2,k, ζ ∈ R \ {0} and thus Ω̆ℓ1 ≠ ζ Ω̆ℓ2 . Since
ℓ1 and ℓ2 are arbitrary, this proves that Ω̆ has full rank. If γ = 0 or
ξ0 ≤ 0 or ϖP ∉ W, then R̆ is singular or undefined since at least
one of the matrices in (10) is singular or undefined. Hence, if and
only if γ ≠ 0 and ξ0 > 0 and finite, and ϖP ∈ W, the mapping
(10) is defined and is bijective. �

Remark 1. Violation of conditions (i)–(iii) implies that (10) cannot
be used to identify theGFRFs from theHOSIDFs. However, this does
not imply that the GFRFs cannot be otherwise identified.

The results from Theorem 1 directly provide results on uniqueness
of the HOSIDFs and GFRFs and their properties for linear systems.

Lemma 4 (GFRF & HOSIDF for Linear Systems). Consider a PWH
system and assume conditions (i)–(iii) in Theorem 1 are satisfied.
Then the following statements are equivalent:

(a) The system is linear.
(b) All HOSIDFs except the first are zero: Hk = 0 ∀k ≠ 1.
(c) All GFRFs except the first are zero: Tp = 0 ∀p ≠ 1.

Proof. Consider a linear PWH system, i.e. ρ : r(t) = α1q(t). Then,
as an LTI system has a sinusoidal response to a sinusoidal input (6),
Hk = 0 ∀k ≠ 1. Next, using (10), the structure of Ω̆ and the fact
that all other matrices are diagonal yields that Tp = 0 ∀p ≠ 1.
Conversely, if Tp = 0 ∀p ≠ 1 this implies a linear PWH system
and by the same arguments Hk = 0 ∀k ≠ 1. �

Theorem 1 provides the first connection between the HOSIDF
and the GFRF. This yields a clear insight into the mechanism
that generates the GFRFs from the HOSIDFs and vice versa. The
results presented in this paper yield a bijective mapping between
the HOSIDF, which is a representation valid only for sinusoidal
inputs, and the GFRF, which is valid for a more general class
of input signals. Therefore, the existence of a mapping from the
GFRF to the HOSIDF is not surprising. However, the existence of
a mapping from the HOSIDF to the GFRF is nontrivial, especially
as no knowledge about the nonlinearity is required to define
this mapping. It is shown that only knowledge on the linear
dynamics is required to connect the GFRF and HOSIDF. That is,
the HOSIDF at a single amplitude–frequency combination provides
sufficient information for identifying the nonlinearity anduniquely
connecting the HOSIDF and GFRF.

The following example illustrates the main results of the paper.
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Fig. 2. Example of a PWH system representing a nonlinear amplifier driving a
linear time invariant fourth-order plant.

Fig. 3. Third generalized FRF (ξ2 = 1.96 Hz. (arbitrary)).

Example 1 (Analysis of a Nonlinear Amplifier). Consider the nonlin-
ear amplifier ρG−(s) in Fig. 2, where ρ is an unknown static poly-
nomial function that represents the nonlinearity and

G−(s) =
10000

s2 + 2513s + 1.579 · 106 (11)

represents the low-pass characteristic of the amplifier. The ampli-
fier generates an input to the fourth-order LTI electromechanical
system (plant)

G+(s) =
750000s2 + 1.875 · 106s + 3.75 · 108

s4 + 7.8s3 + 1601s2 + 400s + 50000
. (12)

As illustrated in Fig. 2, this system fits the structure of a PWH
system.Hence, the results of Theorem1 apply given the knowledge
of G−(s) and G+(s).

Next, the mapping (10) in Theorem 1 is applied to compute
the GFRFs from the HOSIDFs. The required HOSIDFs H(ξ0, γ ) are
identified at a single frequency–amplitude combination by excit-
ing the system in Fig. 2 with a sinusoidal input (6) with an arbi-
trarily chosen amplitude γ = 1 and frequency ξ0 = 10 [Hz]. From
the simulation data, the HOSIDFs are then readily computed using
Definition 3 and are given by Ȟ(ξ0 = 10, γ = 1) = [H1(10, 1)
H2(10, 1) H3(10, 1)]T = [−1.7 − 0.1i − 1.0 · 10−4

+ 1.5 · 10−5i
− 6.6 · 10−7

+ 1.8 · 10−7i]T .
Next, by application of (10), the corresponding GFRFs are

computed for a range of frequencies and the third GFRF is depicted
in Fig. 3. A comparison of the GFRFs obtained with the results
obtained using the exact approach in Shanmugam and Jong (1975)
reveals a close correspondence, e.g., the maximum error is close
to the computational precision. The corresponding HOSIDFs are
computed as in Rijlaarsdam et al. (2011b) and the third-order
HOSIDF is depicted in Fig. 4.
Fig. 4. Third HOSIDF.

4. Conclusion

In this paper a novel connection between two frequency
domain methods for the analysis and modeling of nonlinear
systems is presented. Specifically, a unique relation between the
generalized frequency response function (GFRF) and the higher
order sinusoidal input describing function (HOSIDF) is established.
An explicit analytical relation between the two is derived for
polynomial Wiener–Hammerstein systems and necessary and
sufficient conditions are derived for this bijectivemapping to exist.
Moreover, properties of the GFRFs andHOSIDFs, for linear and time
invariant systems are presented. This analysis yields clear insight
into the mechanisms that generate the GFRFs and HOSIDFs and
provides an efficient method for computing the GFRFs from the
HOSIDFs and vice versa.
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