Frequency Domain Design of Iterative Learning Control and Repetitive Control for Complex Motion Systems

Nard Strijbosch∗ Non-member, Lennart Blanken∗ Non-member
Tom Oomen∗ Non-member

Iterative learning control (ILC) and repetitive control (RC) enable high performance for systems that execute repeating tasks. The aim of this paper is to provide an introduction to the design of ILC algorithms for motion systems and to indicate important recent developments. To enforce robust convergence, the design of ILC/RC algorithms often require detailed parametric specifications on the nominal model and its uncertainty. In this paper, a frequency-domain design procedure is outlined that enables robust design through using FRF measurements, which are often inexpensive, accurate and fast to obtain. Application to a consumer electronic printer is reported.

Keywords: Iterative Learning Control

1. Introduction

Many motion systems perform repetitive tasks. Iterative learning control (ILC) (1) and repetitive control (RC) (2) can significantly improve the performance of such systems, since they can effectively compensate the reproducible, or repeating, part of the error, using limited model knowledge. Successful applications that include repetitive tasks are for instance printers, pick-and-place machines, and wafer stages. In this paper the focus is on the design of ILC algorithms, the RC case follows similarly, (2).

Robust convergence is crucial to deal with limited model knowledge. Time-domain design approaches often require detailed parametric specifications on the model uncertainty, which can be expensive and time consuming to obtain. Instead, frequency-domain ILC/RC design allows to use inexpensive FRF measurements to cope with modelling errors.

In this paper, a frequency-domain design framework for ILC is presented and experimentally applied to a printer. Relations to frequency-domain RC design are provided, which is conceptually similar, and extensions are presented towards multivariable systems and robustness to non-repeating tasks.

2. Problem Formulation

2.1 ILC Setup

The control scheme as depicted in Figure 1 is considered. This control scheme consists of an LTI plant \(G(z) \) and a stabilizing linear feedback controller \(C(z) \). Each repetition \(j \) of the reference signal \(r \) is referred to as a task. This reference is iteration invariant, i.e., \(r_j = r \).

The feedforward and output signal of iteration \(j \) are denoted by \(f_j \) and \(y_j \), respectively. The error in iteration \(j \) is given by

\[
e_j = S r - G S f_j \quad \text{with} \quad S = (I + GC)^{-1}. \tag{1}
\]

The goal of ILC is to minimize, or achieve convergence of, \(e_j \) in terms of an appropriate norm, ideally \(e_\infty = \lim_{j \to \infty} e_j = 0 \) subject to robust convergence of the algorithm. To this purpose, \(e_j \) is measured in task \(j \) and used to construct \(f_{j+1} \) for task \(j + 1 \). Typically, an ILC algorithm of the form:

\[
f_{j+1} = Q(f_j + Le_j) \tag{2}
\]

is used, where \(L, Q \) can be non-causal, i.e., \(L, Q \in \mathbb{R}L_\infty \).

2.2 Convergence Analysis

The closed-loop error propagation of the ILC algorithm (2) is given by

\[
e_{j+1} = Q(1 - GS L)e_j + (1 - Q)S r, \tag{3}
\]

which converges monotonically in \(\|e\|_2 \) if

\[
|Q(e^{j\omega})(1 - G(e^{j\omega})S(e^{j\omega})L(e^{j\omega}))| < 1, \forall \omega \in [0, 2\pi]. \tag{4}
\]

2.3 Problem Formulation

The problem addressed is the design of the filters \(L \) and \(Q \) to guarantee

• robust convergence of the error, i.e., satisfying (4), and
• high performance, i.e., \(e_\infty \) should be small.

It can be shown that these conditions are satisfied if \(Q = 1 \) and (4) is satisfied. This motivates to design \(L = (GS)^{-1} \) and \(Q \) as close to 1 as possible. Furthermore, it is emphasized that robustness to modelling errors, i.e., \(GS \neq 1 \), can be accounted for through appropriate design of \(Q \).

In this paper, it is shown how to design \(L \) and \(Q \) in the frequency-domain, using only limited knowledge of \(GS \) and a FRF measurement.

Remark 2.1 The design of RC is conceptually similar to ILC, see (2). Stability of an RC scheme is achieved if \(|1 - TL_i| = 1, \forall \omega \in [0, 2\pi] \), with \(T = (1 + GC)^{-1}GC \), from which the design aims \(L = T^{-1} \) and \(Q = 1 \) follow.
3. Frequency-domain design of \(L \) and \(Q \) in ILC

The procedure to design the \(L \) and \(Q \)-filter consists out of the following three steps

1. obtain approximate parametric model \(\hat{G}_S \),
2. design \(L \) to approximate \((\hat{G}_S)^{-1} \),
3. design \(Q \) based on non-parametric FRF measurements.

Next, the design steps (2)-(3) are investigated, given a model \(G_S \) from step (1).

3.1 Design of \(L \): inverting \(\hat{G}_S \)

In case \(G_S \) is minimum phase, \(L \) can be constructed using straightforward inversion. In case \(G_S \) is nonminimum phase, direct inversion leads to unstable poles. This can be effectively dealt with through non-causal filtering operations. In [3] several methods are outlined to compute or approximate a stable inverse of a nonminimal phase system.

3.2 Design of \(Q \) based on FRF measurements

As mentioned \(Q = 1 \) will lead to high performance. However, due to \(L \) being not equivalent to \((G_S)^{-1} \), due to the model uncertainties, \(Q \) should be designed to guarantee robustness. FRF measurement data can be used to compute \(|1 - G_SL| \) as given for a specific application in Figure 2. From this figure it is concluded only by designing the \(Q \)-filter properly, Condition (4) can be satisfied. In order to mitigate the phase shift of the \(Q \)-filter, another filtering with the the adjoint \(Q' \) (which is enabled by off-line filtering) is used, such that

\[
Q'(e^{j\omega})Q(e^{j\omega}) = Q(e^{j\omega})Q(e^{j\omega}) = |Q(e^{j\omega})|^2.
\]

By applying this specific filter Condition (4) translates into

\[
|Q(e^{j\omega})|^2 |(1 - G(e^{j\omega})S(e^{j\omega})L(e^{j\omega})))| < 1, \forall \omega \in [0, 2\pi]. \tag{5}
\]

FRF measurement data of \(G_S \) can now be used to tune the magnitude of \(Q(e^{j\omega}) \) such that (5) is satisfied.

It is important to note that using this approach it is not necessary to have a model of the uncertainty of \(G_S \). By using the FRF measurement data to design \(Q \) all the model uncertainties are handled. This is a distinctive advantage compared to alternative robust ILC frameworks.

4. ILC applied to a printer setup

The proposed design approach is applied to the printer setup depicted in Figure 1. A parametric model of the plant is obtained by approximating the data from FRF measurements. The \(L \)-filter is designed by determining the inverse of \(\hat{G}_S \) using a zero phase-error tracking control approach [13]. A \(Q \)-filter is designed as a first-order low-pass filter with a cut-off frequency of 50Hz. From Figure 2 it is observed that Condition (5) is satisfied when this \(Q \)-filter is applied.

In Figure 3 experimental results are presented of a 4th order reference signal that is repetitively applied to the printer. As can be observed the norm of the error decreases as the number of trials increases.

5. Extensions

5.1 Multivariable ILC

In this paper solely single-input and single-output systems (SISO) are discussed. In [24] an approach to use similar frequency domain tools to design the filters \(L \) and \(Q \) for multi-input multi-output (MIMO) systems for both ILC and RC algorithms are proposed. The proposed approach in [6] is to ignore the interaction when deter-