Identification and Control for High-Tech Motion Systems

Identification in high-tech

Man on the moon: Automated identification and control for complex multivariable motion systems

From Experimental Data ... 8 outputs, ≥ 6 inputs, 10,000 freq. points

... to a Parametric Model ...
50 modes, minimal McMillan degree

Minimizing for control
Robust, high-performance controller

Modelling for robust control
Control-relevant model set:
Tight bound on worst-case performance

Experimental validation on an industrial motion system

Inferential: predicting performance
Performance variable \(z \neq \) measured variable \(y \)

Accurate models for \(P_y \) and \(P_z \) used in controller synthesis

Inferential control in motion systems:

Next-generation mechatronic design

Vision: Lightweight motion systems for very fast and ultra accurate positioning

Potential problem: Structural deformations

Our approach: Modelling and control of structural modes by exploiting additional actuators and sensors

Acknowledgments
We acknowledge fruitful discussions with the late professor Okko Bosgra that have significantly contributed to the presented results, and thank Robbert van Herpen, Egon Geerardyn, many MSc. students and our colleagues from industry.