Identification and Control for High Tech Motion Systems

Identification in high tech

Man on the moon: Automated identification and control for complex multivariable motion systems.

From Experimental Data: ...
≥ 8 outputs, ≥ 6 inputs,
≥ 10,000 freq. points

Develop novel techniques for accurate FRF estimation

... to a **Parametric Model:** ...
≥ 50 modes, McMillan degree

\[
\min_{\hat{P}} \left\| W(e^{j\Omega}) \left(P(e^{j\Omega}) - \hat{P}(e^{j\Omega}) \right) \right\|^2
\]

Develop novel parametric identification tools

... relevant for control
Robust, high-performance controller

\[
\min_{\mathbf{C}} \left\| \frac{P}{I} (I + C \hat{P})^{-1} \mathbf{C} (I + \hat{P}) \right\|_{\infty}
\]

Use novel control relevant identification criterion

Modelling for robust control

Control-relevant model set:
Tight bound on worst-case performance

\[
\mathcal{J}_{\text{WC}}(P, C^{\text{exp}}) < \mathcal{J}(\hat{P}, C^{\text{exp}}) + \gamma
\]

Experimental validation on an industrial motion system

Inferential: predicting performance

Performance variable \(z \) ≠ measured variable \(y \)

Accurate models for \(P_1 \) and \(P_2 \) used in controller synthesis

Inferential control in motion systems:

Experimental study on flexible beam setup

Actual performance \(z \) Measured performance \(y \)

![Rede magnitude diagram, nonparametric estimate (dot), Nominal model (solid), model sets (yellow, cyan)](image)

Next-generation mechatronic design

Vision: Lightweight motion systems for very fast and ultra accurate positioning

Potential problem: Structural deformations

Our approach: Modelling and control of structural modes by exploiting additional actuators and sensors

Acknowledgments
We thank our advisors Tom Oomen and Maarten Steinbuch. Furthermore we acknowledge the contributions of Robbert van Herpen, Egon Geerardyn, many MSc. students and our colleagues from industry.